找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: BMS Particles in Three Dimensions; Blagoje Oblak Book 2017 Springer International Publishing AG 2017 BMS Symmetry.BMS Group.Three-dimensio

[復(fù)制鏈接]
樓主: patch-test
21#
發(fā)表于 2025-3-25 04:24:18 | 只看該作者
Symmetries of Gravity in AdS,In this chapter we explore a physical model where the Virasoro group plays a key role, namely three-dimensional gravity on Anti-de Sitter (AdS) backgrounds and its putative dual two-dimensional conformal field theory (CFT). These considerations will be a basis and a guide for our study of asymptotically flat space-times in part III.
22#
發(fā)表于 2025-3-25 08:26:04 | 只看該作者
Classical BMS, SymmetryThe Bondi–Metzner–Sachs (BMS) group is an infinite-dimensional symmetry group of asymptotically flat gravity at null infinity, that extends Poincaré symmetry.
23#
發(fā)表于 2025-3-25 11:57:40 | 只看該作者
24#
發(fā)表于 2025-3-25 18:25:48 | 只看該作者
25#
發(fā)表于 2025-3-25 21:01:23 | 只看該作者
ConclusionWe have now completed our survey of the group-theoretic aspects of three-dimensional gravity, and in particular of BMS symmetry in three dimensions.
26#
發(fā)表于 2025-3-26 00:51:29 | 只看該作者
Charles X. Wang,Scott Webster,Sidong Zhangproblem that can be studied on the sole basis of symmetries, without any assumptions on the underlying microscopic theory. In this introduction we describe this strategy in some more detail, starting in Sect.?. with a broad overview of asymptotic symmetries in general and Bondi-Metzner-Sachs (BMS) s
27#
發(fā)表于 2025-3-26 04:32:01 | 只看該作者
28#
發(fā)表于 2025-3-26 12:10:15 | 只看該作者
NDE 4.0: Image and Sound Recognitionunitary representations, which are induced from representations of their translation subgroup combined with a so-called .. We interpret these representations as . propagating in space-time and having definite transformation properties under the corresponding symmetry group. This picture will be inst
29#
發(fā)表于 2025-3-26 16:18:54 | 只看該作者
30#
發(fā)表于 2025-3-26 18:54:14 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 21:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
涿州市| 嘉黎县| 南木林县| 辽中县| 祁连县| 富蕴县| 桃园县| 陇南市| 阜新| 新昌县| 清水县| 吉安市| 合作市| 梅河口市| 阿克苏市| 余干县| 镇雄县| 大安市| 吉安市| 安远县| 海原县| 闽清县| 钟山县| 满洲里市| 饶平县| 怀安县| 简阳市| 迁安市| 怀仁县| 湖州市| 金湖县| 定南县| 宁武县| 曲麻莱县| 高阳县| 镇雄县| 吉安县| 阿城市| 马公市| 常德市| 蒲江县|