找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Axiomatic, Enriched and Motivic Homotopy Theory; Proceedings of the N J. P. C. Greenlees Conference proceedings 2004 Kluwer Academic Publis

[復(fù)制鏈接]
樓主: 聲音會爆炸
21#
發(fā)表于 2025-3-25 04:40:51 | 只看該作者
Axiomatic, Enriched and Motivic Homotopy Theory978-94-007-0948-5Series ISSN 1568-2609
22#
發(fā)表于 2025-3-25 07:45:17 | 只看該作者
23#
發(fā)表于 2025-3-25 12:38:45 | 只看該作者
24#
發(fā)表于 2025-3-25 18:06:48 | 只看該作者
25#
發(fā)表于 2025-3-25 20:34:23 | 只看該作者
Operads and Cosimplicial Objects: An Introductioneir actions.. The operads we consider are .. operads, .. operads, the little .-cubes operad and the framed little disks operad. Sections 2, 6 and 9, which can be read independently, are an introduction to the theory of operads.
26#
發(fā)表于 2025-3-26 02:50:20 | 只看該作者
Equivariant Motivic Phenomenatute for Mathematical Research. At the workshop on motivic and algebro-geometric homotopy theory I gave two lectures about Galois equivariant motivic phenomena in arithmetic. This article is a slight elaboration of those lectures in the light of comments from the other participants.
27#
發(fā)表于 2025-3-26 06:52:16 | 只看該作者
A Road Map of Motivic Homotopy and Homology Theory of starting with topological spaces and using the unit interval [0, 1] to define homotopy, one starts with smooth schemes over a fixed field k and uses the affine line A. = Spec(.[.]). The constructions are related by two functors from homotopy to homology which, by analogy, we call Hurewicz functors. Here is the main diagram, or road map.
28#
發(fā)表于 2025-3-26 10:51:48 | 只看該作者
29#
發(fā)表于 2025-3-26 16:24:29 | 只看該作者
30#
發(fā)表于 2025-3-26 20:43:47 | 只看該作者
1568-2609 , the NATO Science Committee for their funding, and to all the speakers at the conference, whether or not they were able to contribute to the present volume. Al978-1-4020-1834-3978-94-007-0948-5Series ISSN 1568-2609
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 03:44
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
齐齐哈尔市| 邻水| 来凤县| 阿尔山市| 美姑县| 壤塘县| 永善县| 定日县| 北辰区| 宝坻区| 甘南县| 荃湾区| 滁州市| 台东市| 故城县| 白玉县| 象州县| 信丰县| 磐安县| 古交市| 全州县| 怀柔区| 余姚市| 广丰县| 阳曲县| 江门市| 高陵县| 太康县| 东港市| 平潭县| 汶川县| 娄烦县| 丹阳市| 绵阳市| 临沧市| 洛南县| 巫山县| 大宁县| 峨眉山市| 张北县| 丰城市|