找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Algorithmic Aspects in Information and Management; 18th International C Smita Ghosh,Zhao Zhang Conference proceedings 2024 The Editor(s) (i

[復(fù)制鏈接]
樓主: Awkward
41#
發(fā)表于 2025-3-28 16:04:40 | 只看該作者
https://doi.org/10.1007/978-3-030-75216-3information about all clients is challenging. When client information is provided incrementally, this gives rise to the .. Both the online facility location problem with general facility costs and the one with uniform facility cost have attracted the attention of researchers. In the existing literat
42#
發(fā)表于 2025-3-28 20:24:59 | 只看該作者
43#
發(fā)表于 2025-3-29 00:12:28 | 只看該作者
44#
發(fā)表于 2025-3-29 05:35:48 | 只看該作者
Squeezed States using Parametric Processes,ality. A .-cycle partitioning is a set of . vertex-disjoint .-cycles, i.e. cycles containing exactly . vertices (and thus . edges). The minimum weight .-cycle partition problem (MinWkCP) aims to compute a .-cycle partition with minimum total edge weight. The minimum weight .-path partition problem (
45#
發(fā)表于 2025-3-29 08:53:19 | 只看該作者
46#
發(fā)表于 2025-3-29 14:54:24 | 只看該作者
47#
發(fā)表于 2025-3-29 17:56:49 | 只看該作者
Approximation Algorithm for?the?Maximum Interval Multi-cover Problemquirement ., the goal of the . (MaxIMC) problem is to find a sub-collection of intervals . with . to maximize the number of fully-covered points, where a point . is fully-covered by . if it belongs to at least . intervals of .. In this paper, we present a .-approximation algorithm for the MaxIMC problem.
48#
發(fā)表于 2025-3-29 23:44:25 | 只看該作者
49#
發(fā)表于 2025-3-30 00:01:39 | 只看該作者
50#
發(fā)表于 2025-3-30 04:28:01 | 只看該作者
Approximation Algorithm for?the?Maximum Interval Multi-cover Problemquirement ., the goal of the . (MaxIMC) problem is to find a sub-collection of intervals . with . to maximize the number of fully-covered points, where a point . is fully-covered by . if it belongs to at least . intervals of .. In this paper, we present a .-approximation algorithm for the MaxIMC pro
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-23 22:56
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
镇江市| 斗六市| 蒙城县| 寿光市| 伊宁县| 景洪市| 昔阳县| 清远市| 济南市| 宝山区| 海淀区| 赞皇县| 维西| 临夏县| 手游| 惠来县| 钟山县| 漯河市| 南康市| 博客| 搜索| 晋江市| 临汾市| 温泉县| 醴陵市| 鄂伦春自治旗| 闽清县| 茌平县| 肇州县| 饶河县| 巧家县| 青冈县| 成武县| 华宁县| 徐州市| 庐江县| 罗平县| 广昌县| 平塘县| 巴林右旗| 琼结县|