找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Swarm Intelligence; 15th International C Ying Tan,Yuhui Shi Conference proceedings 2024 The Editor(s) (if applicable) and The A

[復制鏈接]
樓主: 密度
21#
發(fā)表于 2025-3-25 06:00:20 | 只看該作者
22#
發(fā)表于 2025-3-25 08:23:16 | 只看該作者
Gründungsintention von Akademikernoptima. 12 CEC2005 benchmark functions are selected for testing the performance of CSBOA, and the results of the simulation demonstrate that the CSBOA algorithm effectively accelerates the convergence speed, improves the convergence accuracy, and reduces the likelihood of falling into localized states.
23#
發(fā)表于 2025-3-25 12:14:12 | 只看該作者
Implikationen und Limitationen, The results of experimental comparative analysis on ten benchmark test functions demonstrate that the improved Kepler optimization algorithm based on a mixed strategy exhibits notable improvements in both convergence speed and solution accuracy.
24#
發(fā)表于 2025-3-25 18:25:21 | 只看該作者
25#
發(fā)表于 2025-3-25 22:23:07 | 只看該作者
A Tri-Swarm Particle Swarm Optimization Considering the Cooperation and the Fitness Valuest fitness value were respectively divided into ERS, EIS and CS. The results on seven unimodal benchmark functions demonstrated the superiority of the proposed variant compared with other five variants.
26#
發(fā)表于 2025-3-26 01:20:58 | 只看該作者
Circle Chaotic Search-Based Butterfly Optimization Algorithmoptima. 12 CEC2005 benchmark functions are selected for testing the performance of CSBOA, and the results of the simulation demonstrate that the CSBOA algorithm effectively accelerates the convergence speed, improves the convergence accuracy, and reduces the likelihood of falling into localized states.
27#
發(fā)表于 2025-3-26 05:48:02 | 只看該作者
Improved Kepler Optimization Algorithm Based on?Mixed Strategy The results of experimental comparative analysis on ten benchmark test functions demonstrate that the improved Kepler optimization algorithm based on a mixed strategy exhibits notable improvements in both convergence speed and solution accuracy.
28#
發(fā)表于 2025-3-26 08:36:38 | 只看該作者
29#
發(fā)表于 2025-3-26 14:42:36 | 只看該作者
30#
發(fā)表于 2025-3-26 20:14:32 | 只看該作者
Cooperative Search and Rescue Target Assignment Based on Improved Ant Colony Algorithmand makes full use of the global search ability of ant colony algorithm to explore the optimal solution. The simulation results show that this method can quickly and effectively provide the target assignment scheme of search and rescue resources, maximize the survival probability, and improve the efficiency of search and rescue at sea.
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-12 19:57
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
三原县| 故城县| 济源市| 九江市| 牙克石市| 成武县| 海门市| 东至县| 辽源市| 芮城县| 内丘县| 遵义县| 宁波市| 手游| 梁河县| 宁津县| 斗六市| 金塔县| 龙井市| 买车| 株洲市| 丰原市| 开平市| 静宁县| 莱西市| 门源| 临沂市| 泸定县| 台北市| 浠水县| 平果县| 阜新| 含山县| 新源县| 桃江县| 陇南市| 光泽县| 从江县| 扶风县| 呼图壁县| 南皮县|