找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advanced Intelligent Computing in Bioinformatics; 20th International C De-Shuang Huang,Yijie Pan,Qinhu Zhang Conference proceedings 2024 Th

[復(fù)制鏈接]
51#
發(fā)表于 2025-3-30 11:28:26 | 只看該作者
Fully Convolutional Neural Network for Predicting Cancer-Specific CircRNA-MiRNA Interaction SitescRNAs regulate gene expression by adsorbing miRNAs and acting as ‘sponges’. Dysregulation of miRNAs has been observed in various cancer tissues, and co-expression of circRNAs with miRNAs has been noted in many cancer tissues. The co-expression of miRNAs with circRNAs may play an important role in re
52#
發(fā)表于 2025-3-30 14:32:06 | 只看該作者
GSDPI: An Integrated Feature Extraction Framework for Predicting Novel Drug-Protein Interactionelopment processes. However, existing DPIs prediction models still encounter challenges in efficiently extracting node features from complex networks. This paper proposed a novel DPIs prediction framework named GSDPI, in which graph neural networks (GNN) were employed to aggregate neighborhood infor
53#
發(fā)表于 2025-3-30 19:55:10 | 只看該作者
54#
發(fā)表于 2025-3-31 00:02:32 | 只看該作者
HyperCPI: A Novel Method Based on Hypergraph for Compound Protein Interaction Prediction with Good Gowever, existing deep learning approaches face a challenge due to the lack of representations for non-pairwise relations and substructures in compounds, leading to limited performance and poor generalization ability. To address this challenge, a novel method named HyperCPI is proposed in this study.
55#
發(fā)表于 2025-3-31 00:56:00 | 只看該作者
iEMNN: An Iterative Integration Method for Single-Cell Transcriptomic Data Based on Network Similarits arise from non-biological variations such as different sequencing batches, sequencing protocols, sequencing depths, and so on. Batch effects introduce systematic biases and confound biological variations of interest, which have a detrimental impact on the validity of study findings. Eliminating b
56#
發(fā)表于 2025-3-31 05:34:23 | 只看該作者
57#
發(fā)表于 2025-3-31 11:30:03 | 只看該作者
58#
發(fā)表于 2025-3-31 16:51:48 | 只看該作者
59#
發(fā)表于 2025-3-31 17:37:07 | 只看該作者
CDDTR: Cross-Domain Autoencoders for Predicting Cell Type Specific Drug-Induced Transcriptional Respextracted by 10-fold cross-validation have a 0.663 PCC, revealing the competence of CDDTR to predict the cross-cell type responses. By integrating perturbations from multiple cell lines and incorporating pre-training, the predictive performance of CDDTR can be further improved. Source code is availa
60#
發(fā)表于 2025-4-1 00:33:46 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-21 23:56
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
武平县| 灵山县| 沙河市| 即墨市| 丰顺县| 文安县| 乳山市| 盖州市| 罗山县| 清苑县| 鸡泽县| 乌什县| 玛曲县| 玉山县| 吉木萨尔县| 涟水县| 阿荣旗| 常宁市| 太原市| 夏河县| 壶关县| 盐边县| 澜沧| 汉中市| 湟源县| 甘洛县| 阳新县| 东城区| 台安县| 肇庆市| 清远市| 佛坪县| 红桥区| 井冈山市| 绍兴县| 唐河县| 和政县| 建阳市| 华池县| 永吉县| 永定县|