找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Advanced Intelligent Computing Technology and Applications; 20th International C De-Shuang Huang,Xiankun Zhang,Qinhu Zhang Conference proce

[復(fù)制鏈接]
樓主: Lampoon
31#
發(fā)表于 2025-3-26 21:59:42 | 只看該作者
32#
發(fā)表于 2025-3-27 04:24:55 | 只看該作者
33#
發(fā)表于 2025-3-27 06:48:07 | 只看該作者
Heutiger Stand der Totalprothesen der Hüfteh (BAS) algorithm. The experimental result shows that the average recognition accuracy of the method are 95.8% and 96.7% on CWRU and IMS datasets, which proves that our model can effectively extract the fault features and determine the rolling bearing fault types more accurately.
34#
發(fā)表于 2025-3-27 10:08:09 | 只看該作者
35#
發(fā)表于 2025-3-27 14:46:13 | 只看該作者
Potential and Limitations of LLMs in Capturing Structured Semantics: A Case Study on SRLtructures, and scaling-up doesn‘t always mirror potential. Additionally, limitations of LLMs are observed in C-arguments, etc. Lastly, we are surprised to discover that significant overlap in the errors is made by both LLMs and untrained humans, accounting for almost 30% of all errors.
36#
發(fā)表于 2025-3-27 17:56:33 | 只看該作者
37#
發(fā)表于 2025-3-27 23:25:21 | 只看該作者
IBAS-SVM Rolling Bearing Fault Diagnosis Method Based on Empirical Modal Characteristicsh (BAS) algorithm. The experimental result shows that the average recognition accuracy of the method are 95.8% and 96.7% on CWRU and IMS datasets, which proves that our model can effectively extract the fault features and determine the rolling bearing fault types more accurately.
38#
發(fā)表于 2025-3-28 04:48:17 | 只看該作者
39#
發(fā)表于 2025-3-28 07:56:31 | 只看該作者
40#
發(fā)表于 2025-3-28 11:06:50 | 只看該作者
A Dynamic Collaborative Recommendation Method Based on Multimodal Fusiony capture in recommendation systems. To address this, we propose MBTRec, a multimodal recommendation model based on the Transformer encoder. It employs an innovative bidirectional tower-type attention mechanism (Bi Towernet) for modal fusion, ensuring the independent contribution of each modality wh
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 10:20
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
大兴区| 盐亭县| 安西县| 广河县| 缙云县| 新巴尔虎右旗| 五指山市| 汤原县| 临潭县| 姜堰市| 稻城县| 东至县| 贵阳市| 黔南| 武平县| 宁波市| 乌拉特后旗| 清水河县| 云阳县| 海盐县| 开阳县| 平邑县| 静乐县| 东乌珠穆沁旗| 库尔勒市| 林州市| 同德县| 淅川县| 长丰县| 牡丹江市| 卢龙县| 宁陵县| 台北市| 丰镇市| 武安市| 宁海县| 岳阳县| 乐平市| 页游| 于田县| 靖远县|