找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: AI for Health Equity and Fairness; Leveraging AI to Add Arash Shaban-Nejad,Martin Michalowski,Simone Bianc Book 2024 The Editor(s) (if appl

[復制鏈接]
樓主: INEPT
41#
發(fā)表于 2025-3-28 17:48:13 | 只看該作者
Arash Shaban-Nejad,Martin Michalowski,Simone BiancHighlights the latest achievements in the use of AI in improving healthy equity.Includes revised versions of selected papers presented at the 2024 AAAI Workshop on Health Intelligence.Interconnects th
42#
發(fā)表于 2025-3-28 20:33:06 | 只看該作者
43#
發(fā)表于 2025-3-29 00:07:24 | 只看該作者
AI for Health Equity and Fairness978-3-031-63592-2Series ISSN 1860-949X Series E-ISSN 1860-9503
44#
發(fā)表于 2025-3-29 06:19:12 | 只看該作者
45#
發(fā)表于 2025-3-29 07:29:50 | 只看該作者
46#
發(fā)表于 2025-3-29 12:34:59 | 只看該作者
,Navigating the?Synthetic Realm: Harnessing Diffusion-Based Models for?Laparoscopic Text-to-Image GeA validation study with a human assessment survey underlines the realistic nature of our synthetic data, as medical personnel detects actual images in a pool with generated images causing a false-positive rate of 66%. In addition, the investigation of a state-of-the-art machine learning model to rec
47#
發(fā)表于 2025-3-29 16:15:23 | 只看該作者
48#
發(fā)表于 2025-3-29 19:47:15 | 只看該作者
,Using Large Language Models for?Generating Smart Contracts for?Health Insurance from?Textual Policisess the LLM output, we propose ., ., ., ., and . as metrics. Our evaluation employs three health insurance policies (.) with increasing difficulty from Medicare’s official booklet. Our evaluation uses GPT-3.5 Turbo, GPT-3.5 Turbo 16K, GPT-4, GPT-4 Turbo and CodeLLaMA. Our findings confirm that LLMs
49#
發(fā)表于 2025-3-30 00:42:51 | 只看該作者
Can GPT Improve the State of Prior Authorization Via Guideline Based Automated Question Answering?,s introduce our own novel prompting technique. Moreover, we report qualitative assessment by humans on the natural language generation outputs from our approach. Results show that our method achieves superior performance with the mean weighted F1 score of 0.61 as compared to its standard counterpart
50#
發(fā)表于 2025-3-30 04:53:59 | 只看該作者
Knowledge-Grounded Medical Dialogue Generation,n effectiveness. First,?we build a knowledge bank of recorded patient-provider genetic counseling sessions and leverage an open-source LLM to extract?and summarize relevant information. We leverage this knowledge bank?to develop a retrieval-augmented system for answering patient questions. We find t
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 01:46
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
民县| 通州市| 太湖县| 措勤县| 天柱县| 扎囊县| 新巴尔虎左旗| 九江县| 甘谷县| 康马县| 易门县| 长武县| 漯河市| 淳化县| 健康| 康定县| 鄢陵县| 寿宁县| 柞水县| 密云县| 桐庐县| 鄂伦春自治旗| 肃南| 黑河市| 宁城县| 海淀区| 威宁| 鄂伦春自治旗| 平安县| 张家港市| 门头沟区| 鄂托克旗| 新乐市| 保靖县| 镇远县| 廊坊市| 晋江市| 噶尔县| 沂南县| 抚州市| 祥云县|