找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: A Course in Real Algebraic Geometry; Positivity and Sums Claus Scheiderer Textbook 2024 The Editor(s) (if applicable) and The Author(s), u

[復(fù)制鏈接]
樓主: commotion
21#
發(fā)表于 2025-3-25 06:29:56 | 只看該作者
22#
發(fā)表于 2025-3-25 11:14:42 | 只看該作者
23#
發(fā)表于 2025-3-25 11:47:47 | 只看該作者
The Role of the European Union,s are given to polynomials that are strictly positive on some domain, such as the positivstellens?tze of Schmüdgen and Putinar. An optional alternative approach is offered, which uses pure states for convex cones and leads to the Archimedean local-global principle.
24#
發(fā)表于 2025-3-25 18:08:35 | 只看該作者
25#
發(fā)表于 2025-3-25 21:06:14 | 只看該作者
https://doi.org/10.1007/978-1-349-20902-6ariety . has minimal degree if, and only if, every non-negative quadratic form on . is a sum of squares of linear forms. Quantitative refinements are given as well. These results encompass several major classical theorems, among them the Hilbert 1888 theorems that were discussed in Chapter 2.
26#
發(fā)表于 2025-3-26 00:37:25 | 只看該作者
27#
發(fā)表于 2025-3-26 06:02:53 | 只看該作者
Positive Polynomials with Zeros,local-global principle, which is given an independent second proof. Combining this result with an analysis of (weighted) sums of squares in local rings, a series of existence and non-existence results is obtained for sums of squares representations of non-negative polynomials.
28#
發(fā)表于 2025-3-26 08:48:59 | 只看該作者
Sums of Squares on Projective Varieties,ariety . has minimal degree if, and only if, every non-negative quadratic form on . is a sum of squares of linear forms. Quantitative refinements are given as well. These results encompass several major classical theorems, among them the Hilbert 1888 theorems that were discussed in Chapter 2.
29#
發(fā)表于 2025-3-26 12:57:25 | 只看該作者
30#
發(fā)表于 2025-3-26 18:22:44 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 03:44
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
福安市| 通许县| 驻马店市| 钟山县| 明水县| 武城县| 左云县| 德保县| 南康市| 奉贤区| 仙桃市| 吉水县| 南宫市| 定结县| 禄丰县| 台山市| 海兴县| 监利县| 富蕴县| 安宁市| 开封市| 长沙市| 个旧市| 岢岚县| 株洲县| 桂林市| 宜兰县| 大安市| 临邑县| 南昌县| 凤阳县| 平和县| 韶关市| 平乐县| 望城县| 永城市| 万山特区| 离岛区| 女性| 衢州市| 襄垣县|