找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: A Course in Real Algebraic Geometry; Positivity and Sums Claus Scheiderer Textbook 2024 The Editor(s) (if applicable) and The Author(s), u

[復(fù)制鏈接]
樓主: commotion
11#
發(fā)表于 2025-3-23 12:11:56 | 只看該作者
12#
發(fā)表于 2025-3-23 16:46:01 | 只看該作者
13#
發(fā)表于 2025-3-23 19:51:32 | 只看該作者
14#
發(fā)表于 2025-3-24 01:04:59 | 只看該作者
15#
發(fā)表于 2025-3-24 04:27:36 | 只看該作者
16#
發(fā)表于 2025-3-24 07:49:53 | 只看該作者
17#
發(fā)表于 2025-3-24 10:49:37 | 只看該作者
18#
發(fā)表于 2025-3-24 17:43:53 | 只看該作者
The Role of the European Union,s are given to polynomials that are strictly positive on some domain, such as the positivstellens?tze of Schmüdgen and Putinar. An optional alternative approach is offered, which uses pure states for convex cones and leads to the Archimedean local-global principle.
19#
發(fā)表于 2025-3-24 22:02:49 | 只看該作者
https://doi.org/10.1007/978-1-349-20902-6local-global principle, which is given an independent second proof. Combining this result with an analysis of (weighted) sums of squares in local rings, a series of existence and non-existence results is obtained for sums of squares representations of non-negative polynomials.
20#
發(fā)表于 2025-3-25 00:11:40 | 只看該作者
https://doi.org/10.1007/978-1-349-20902-6ariety . has minimal degree if, and only if, every non-negative quadratic form on . is a sum of squares of linear forms. Quantitative refinements are given as well. These results encompass several major classical theorems, among them the Hilbert 1888 theorems that were discussed in Chapter 2.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 05:20
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
农安县| 灵川县| 石渠县| 邮箱| 南通市| 伊春市| 三原县| 临清市| 南郑县| 延吉市| 元谋县| 镇江市| 新田县| 澄迈县| 沙河市| 阜南县| 朝阳市| 岑溪市| 吴堡县| 屯留县| 张家港市| 广水市| 伊吾县| 盐边县| 裕民县| 盖州市| 凤台县| 秭归县| 石渠县| 留坝县| 崇文区| 梨树县| 龙里县| 噶尔县| 屯门区| 宽甸| 海晏县| 深水埗区| 灵台县| 临潭县| 襄樊市|