找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Averaging Methods in Nonlinear Dynamical Systems; Jan A. Sanders,Ferdinand Verhulst,James Murdock Book 2007Latest edition Springer-Verlag

[復(fù)制鏈接]
樓主: 不讓做的事
31#
發(fā)表于 2025-3-26 22:41:01 | 只看該作者
32#
發(fā)表于 2025-3-27 02:01:54 | 只看該作者
Invariant Manifolds by Averaging,ms, a basic approach is to locate and to characterize the classical ingredients of such systems. These ingredients are critical points (equilibrium solutions), periodic solutions, invariant manifolds (in particular quasiperiodic tori), homoclinics, heteroclinics, and in general stable and unstable manifolds of special solutions.
33#
發(fā)表于 2025-3-27 08:34:07 | 只看該作者
34#
發(fā)表于 2025-3-27 13:03:16 | 只看該作者
Applied Mathematical Scienceshttp://image.papertrans.cn/b/image/166957.jpg
35#
發(fā)表于 2025-3-27 15:01:04 | 只看該作者
Averaging Methods in Nonlinear Dynamical Systems978-0-387-48918-6Series ISSN 0066-5452 Series E-ISSN 2196-968X
36#
發(fā)表于 2025-3-27 20:17:18 | 只看該作者
https://doi.org/10.1007/978-3-642-94414-7eeping” of averaging calculations, averaging systems containing “slow time”, ways to remove the nonuniqueness of the averaging transformation, and the relationship between averaging and the method of multiple scales.
37#
發(fā)表于 2025-3-27 22:18:07 | 只看該作者
https://doi.org/10.1007/978-3-642-48555-8ms, a basic approach is to locate and to characterize the classical ingredients of such systems. These ingredients are critical points (equilibrium solutions), periodic solutions, invariant manifolds (in particular quasiperiodic tori), homoclinics, heteroclinics, and in general stable and unstable manifolds of special solutions.
38#
發(fā)表于 2025-3-28 05:09:50 | 只看該作者
https://doi.org/10.1007/978-0-387-48918-6Dynamical; Methods; Nonlinear; Systems; bifurcation; differential equation; partial differential equation;
39#
發(fā)表于 2025-3-28 09:23:57 | 只看該作者
978-1-4419-2376-9Springer-Verlag New York 2007
40#
發(fā)表于 2025-3-28 10:38:35 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-24 16:08
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
财经| 天全县| 九寨沟县| 阿拉善右旗| 峡江县| 腾冲县| 呼伦贝尔市| 中西区| 临泉县| 蒙自县| 泸州市| 临沂市| 隆安县| 德清县| 高淳县| 河间市| 自治县| 漳平市| 沁源县| 普宁市| 石首市| 武安市| 永嘉县| 贡觉县| 同江市| 阳春市| 广西| 江阴市| 海城市| 毕节市| 曲周县| 香港| 密云县| 娱乐| 郴州市| 澄江县| 武强县| 响水县| 克山县| 菏泽市| 蒲城县|