找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Automorphisms of Affine Spaces; Arno Essen Book 1995 Springer Science+Business Media B.V. 1995 Dimension.Grad.algebraic group.algorithms.d

[復(fù)制鏈接]
樓主: 故障
31#
發(fā)表于 2025-3-27 00:53:53 | 只看該作者
On the Markus-Yamabe ConjectureThe so called . or . (MYC(n)) is as follows:.If . ∈ ..(?., ?.) satisfies the so called Markus — Yamabe Condition, i.e. for all . ∈ ?. all eigenvalues of . (.) have a negative real part and if .(0) = 0, then 0 is a global attractor of the ODE
32#
發(fā)表于 2025-3-27 04:23:34 | 只看該作者
33#
發(fā)表于 2025-3-27 05:38:55 | 只看該作者
34#
發(fā)表于 2025-3-27 10:38:36 | 只看該作者
35#
發(fā)表于 2025-3-27 15:38:27 | 只看該作者
An Algorithm that Determines whether a Polynomial Map is BijectiveOne of the central problems in the study of polynomial maps is the determination of the bijective ones. Although there are many results in the literature on this subject, they can not be used on polynomial maps of high degrees due to memory limitation or the complexity of the algorithm.
36#
發(fā)表于 2025-3-27 21:24:42 | 只看該作者
37#
發(fā)表于 2025-3-27 21:59:03 | 只看該作者
38#
發(fā)表于 2025-3-28 03:41:15 | 只看該作者
978-90-481-4566-9Springer Science+Business Media B.V. 1995
39#
發(fā)表于 2025-3-28 09:00:53 | 只看該作者
https://doi.org/10.1007/978-1-349-08810-2rs and ?:= the complex numbers. Furthermore . will denote an arbitrary field and . = (.., ..., ..): .. → .. a . i.e. a map of the form . where each .. belongs to the polynomial ring .[.]: = .[.., ..., ..].
40#
發(fā)表于 2025-3-28 14:10:36 | 只看該作者
,Goldsmith’s Singularities and Merits,espect is “Geometric Invariant Theory” of Mumford (see [15]). The major part of the book only concerns reductive groups. More recently some work has been done to do similar things for general algebraic groups (see [8], [5], [6], [7] and [4]).
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 10:34
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
博兴县| 湘阴县| 静乐县| 兰坪| 上蔡县| 左云县| 宿松县| 屯门区| 会昌县| 宁化县| 肥城市| 威海市| 兴海县| 秦皇岛市| 方山县| 社会| 蕲春县| 兴国县| 漾濞| 临城县| 吴旗县| 育儿| 衡水市| 长岛县| 兴和县| 文昌市| 昔阳县| 宜都市| 施甸县| 上思县| 汉中市| 贵阳市| 宜兴市| 滨州市| 永和县| 江华| 涟源市| 普安县| 改则县| 丰原市| 扎鲁特旗|