找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Automorphisms in Birational and Affine Geometry; Levico Terme, Italy, Ivan Cheltsov,Ciro Ciliberto,Mikhail Zaidenberg Conference proceeding

[復(fù)制鏈接]
樓主: 惡化
11#
發(fā)表于 2025-3-23 12:33:23 | 只看該作者
12#
發(fā)表于 2025-3-23 14:34:59 | 只看該作者
Au(III) Series with ,C,N and ,N,N′ LigandsWe survey some results on the nonrationality and birational rigidity of certain hypersurfaces of Fano type. The focus is on hypersurfaces of Fano index one, but hypersurfaces of higher index are also discussed.
13#
發(fā)表于 2025-3-23 21:39:32 | 只看該作者
Probing Gold: X-Ray Absorption SpectroscopyWe show that the Zariski closure of the set of hypersurfaces of degree . in ., where . ≥ 5, which are either not factorial or not birationally superrigid, is of codimension at least . in the parameter space.
14#
發(fā)表于 2025-3-23 23:23:56 | 只看該作者
https://doi.org/10.1057/9781137471369This is a survey of some results on the structure and classification of normal analytic compactifications of .. Mirroring the existing literature, we especially emphasize the compactifications for which the curve at infinity is irreducible.
15#
發(fā)表于 2025-3-24 04:45:05 | 只看該作者
16#
發(fā)表于 2025-3-24 07:17:15 | 只看該作者
17#
發(fā)表于 2025-3-24 13:35:16 | 只看該作者
https://doi.org/10.1007/978-3-319-06707-0Let . be an algebraically closed field of characteristic zero. Given a polynomial . with one place at infinity, we prove that either . is equivalent to a coordinate, or the family . has at most two rational elements. When . has two rational elements, we give a description of the singularities of these two elements.
18#
發(fā)表于 2025-3-24 16:32:21 | 只看該作者
19#
發(fā)表于 2025-3-24 21:28:17 | 只看該作者
Del Pezzo Surfaces and Local InequalitiesI prove new local inequality for divisors on smooth surfaces, describe its applications, and compare it to a similar local inequality that is already known by experts.
20#
發(fā)表于 2025-3-24 23:50:56 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-24 23:19
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
徐水县| 青川县| 临洮县| 万盛区| 广灵县| 祁连县| 平武县| 临湘市| 普格县| 镇平县| 建德市| 江西省| 博野县| 泰顺县| 彩票| 辉南县| 容城县| 长汀县| 武安市| 咸阳市| 阜新| 洪洞县| 莎车县| 新丰县| 栾城县| 津南区| 林口县| 苍溪县| 阳东县| 时尚| 武夷山市| 陆河县| 肇州县| 突泉县| 鲁山县| 东莞市| 登封市| 伊宁市| 略阳县| 科技| 谢通门县|