找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Automorphic Forms, Representation Theory and Arithmetic; Papers presented at Gelbart Harder Iwasawa,Jacquet Katz Piatetski-Shap Conference

[復(fù)制鏈接]
樓主: necrosis
31#
發(fā)表于 2025-3-27 00:53:10 | 只看該作者
32#
發(fā)表于 2025-3-27 03:56:52 | 只看該作者
33#
發(fā)表于 2025-3-27 08:23:21 | 只看該作者
Derivatives of L-Series at s = 0,ned, especially for certain types of characters [6; II, III, IV]. It is appropriate to present a paper on this subject here since it was at the Tata Institute that the complex quadratic case was treated in the lectures of Siegel [4] and later work of Ramachandra [3]. It has become clear in recent ye
34#
發(fā)表于 2025-3-27 11:04:05 | 只看該作者
35#
發(fā)表于 2025-3-27 14:10:14 | 只看該作者
36#
發(fā)表于 2025-3-27 19:38:23 | 只看該作者
,War and Controversy: 1940–1945,essarily totally real) algebraic number field. At the time of the Bombay Colloquium (1979), H. M. Stark orally communicated to the author that he has obtained such a result for non-real cubic fields. His oral communication was an initial impetus to the present work. The author wishes to express his gratitude to Stark.
37#
發(fā)表于 2025-3-28 00:16:44 | 只看該作者
38#
發(fā)表于 2025-3-28 05:11:53 | 只看該作者
Sabine Bollig,Sabrina G?bel,Angelika Sichmas of Eisenstein series, and L. is the continuous part of the spectrum, given by integrals of Eisenstein series. If . is a function of compact support or of sufficiently rapid decay on G, then convolution with . defines an endomorphism T. of L.(.G), and the kernel function ..
39#
發(fā)表于 2025-3-28 08:10:24 | 只看該作者
A Remark on Zeta Functions of Algebraic Number Fields,essarily totally real) algebraic number field. At the time of the Bombay Colloquium (1979), H. M. Stark orally communicated to the author that he has obtained such a result for non-real cubic fields. His oral communication was an initial impetus to the present work. The author wishes to express his gratitude to Stark.
40#
發(fā)表于 2025-3-28 11:05:08 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 07:14
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
姜堰市| 内乡县| 容城县| 博白县| 胶南市| 新巴尔虎左旗| 萍乡市| 新沂市| 新绛县| 延边| 浦北县| 灵石县| 阳朔县| 蚌埠市| 霸州市| 钦州市| 彩票| 嵩明县| 贵德县| 巫山县| 十堰市| 张掖市| 抚远县| 曲水县| 景泰县| 洞头县| 台江县| 隆德县| 北海市| 阳江市| 东方市| 会宁县| 潼关县| 准格尔旗| 华亭县| 宾川县| 南郑县| 洛浦县| 剑阁县| 旺苍县| 滕州市|