找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Automatic Speech Recognition; A Deep Learning Appr Dong Yu,Li Deng Book 2015 Springer-Verlag London 2015 Adaptive Training.Automatic Speech

[復(fù)制鏈接]
樓主: advocate
41#
發(fā)表于 2025-3-28 15:08:41 | 只看該作者
42#
發(fā)表于 2025-3-28 21:07:39 | 只看該作者
43#
發(fā)表于 2025-3-29 01:23:54 | 只看該作者
44#
發(fā)表于 2025-3-29 03:31:15 | 只看該作者
Deep Neural Network Sequence-Discriminative Trainingximum mutual information (MMI), boosted MMI (BMMI), minimum phone error (MPE), and minimum Bayes risk (MBR) training criteria, and discuss the practical techniques, including lattice generation, lattice compensation, frame dropping, frame smoothing, and learning rate adjustment, to make DNN sequence-discriminative training effective.
45#
發(fā)表于 2025-3-29 10:14:37 | 只看該作者
Representation Sharing and Transfer in Deep Neural Networksared and transferred across related tasks through techniques such as multitask and transfer learning. We will use multilingual and crosslingual speech recognition as the main example, which uses a shared-hidden-layer DNN architecture, to demonstrate these techniques.
46#
發(fā)表于 2025-3-29 12:32:20 | 只看該作者
-Pseudo-Differential Operators,raining, and subspace methods. We further show that adaptation in DNNs can bring significant error rate reduction at least for some speech recognition tasks and thus is as important as that in the GMM systems.
47#
發(fā)表于 2025-3-29 15:44:35 | 只看該作者
Lewis R. Gordon,LaRose T. Parrisesents a matrix operation upon its children. We describe algorithms to carry out forward computation and gradient calculation in CN and introduce most popular computation node types used in a typical CN.
48#
發(fā)表于 2025-3-29 20:57:49 | 只看該作者
Adaptation of Deep Neural Networksraining, and subspace methods. We further show that adaptation in DNNs can bring significant error rate reduction at least for some speech recognition tasks and thus is as important as that in the GMM systems.
49#
發(fā)表于 2025-3-30 03:07:43 | 只看該作者
50#
發(fā)表于 2025-3-30 06:01:58 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 19:49
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
团风县| 马山县| 砚山县| 泾川县| 池州市| 武山县| 芒康县| 绵阳市| 双牌县| 南汇区| 三都| 长沙县| 临安市| 陵川县| 开鲁县| 六盘水市| 桐梓县| 祁阳县| 乌兰浩特市| 江达县| 商都县| 荃湾区| 厦门市| 于田县| 杭州市| 武汉市| 贡山| 通辽市| 当涂县| 黄平县| 珲春市| 深圳市| 手机| 五原县| 大兴区| 南通市| 沐川县| 秦安县| 晋宁县| 芦山县| 宾阳县|