找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Automated Deduction - CADE-18; 18th International C Andrei Voronkov Conference proceedings 2002 Springer-Verlag Berlin Heidelberg 2002 Auto

[復(fù)制鏈接]
樓主: 自由
21#
發(fā)表于 2025-3-25 06:35:02 | 只看該作者
A Gradual Approach to a More Trustworthy, Yet Scalable, Proof-Carrying Code programs..In this paper we discuss how to produce the necessary formal soundness theorem given a safety policy. As an application of the framework, we have used the Coq system to prove the soundness of the proof rules for a type-based safety policy for native machine code compiled from Java.
22#
發(fā)表于 2025-3-25 11:00:02 | 只看該作者
23#
發(fā)表于 2025-3-25 14:45:10 | 只看該作者
24#
發(fā)表于 2025-3-25 15:48:22 | 只看該作者
https://doi.org/10.1007/978-3-7643-8234-6ion. From an analysis of this construction, we deduce a new logical rule [?.] which provides shorter proofs than the rule [?.] of .. We also present a linear implementation of the counter-model generation algorithm for pseudo-atomic sequents.
25#
發(fā)表于 2025-3-25 21:51:27 | 只看該作者
26#
發(fā)表于 2025-3-26 03:07:42 | 只看該作者
27#
發(fā)表于 2025-3-26 06:05:57 | 只看該作者
28#
發(fā)表于 2025-3-26 09:34:46 | 只看該作者
29#
發(fā)表于 2025-3-26 15:06:04 | 只看該作者
Embedding Lax Logic into Intuitionistic Logiconal λ-calculus. We show that lax logic can be faithfully embedded into the underlying intuitionistic logic and discuss (computational) properties of the embedding. Using the proposed polynomial-time computable embedding, PSPACE-completeness of the provability problem of propositional lax logic is shown.
30#
發(fā)表于 2025-3-26 20:37:25 | 只看該作者
Combining Proof-Search and Counter-Model Construction for Deciding G?del-Dummett Logicion. From an analysis of this construction, we deduce a new logical rule [?.] which provides shorter proofs than the rule [?.] of .. We also present a linear implementation of the counter-model generation algorithm for pseudo-atomic sequents.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-23 10:49
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
盘锦市| 遂川县| 鄂伦春自治旗| 金坛市| 滦南县| 泽库县| 天柱县| 孟连| 洛浦县| 旺苍县| 陈巴尔虎旗| 淅川县| 江西省| 郴州市| 环江| 朔州市| 光山县| 新和县| 苏州市| 南阳市| 海丰县| 达日县| 宜兰市| 太康县| 武隆县| 思茅市| 九龙城区| 宣恩县| 炉霍县| 五常市| 仙居县| 新干县| 武城县| 南澳县| 洪湖市| 宜章县| 永福县| 蒙阴县| 内黄县| 吴江市| 扬中市|