找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Automated Deduction - CADE-15; 15th International C Claude Kirchner,Hélène Kirchner Conference proceedings 1998 Springer-Verlag Berlin Heid

[復(fù)制鏈接]
樓主: Enlightening
31#
發(fā)表于 2025-3-26 21:28:27 | 只看該作者
,X.R.S: Explicit reduction systems — A first-order calculus for higher-order calculi,rder systems which we will name .. We give general conditions to define a confluent XRS. Particularly, we restrict the general condition of orthogonality of the classical higher-order rewriting systems to the orthogonality of the rules initiating substitutions.
32#
發(fā)表于 2025-3-27 03:11:25 | 只看該作者
33#
發(fā)表于 2025-3-27 09:13:03 | 只看該作者
34#
發(fā)表于 2025-3-27 10:17:03 | 只看該作者
35#
發(fā)表于 2025-3-27 16:26:17 | 只看該作者
System description: Cooperation in model elimination: CPTHEO,
36#
發(fā)表于 2025-3-27 21:49:06 | 只看該作者
37#
發(fā)表于 2025-3-27 23:08:53 | 只看該作者
38#
發(fā)表于 2025-3-28 02:05:08 | 只看該作者
Zehlia Babaci-Wilhite,Macleans A. Geo-JajaleanK is a “l(fā)ean”, i.e., extremely compact, Prolog implementation of a free variable tableau calculus for propositional modal logics. leanK 2.0 includes additional search space restrictions and fairness strategies, giving a decision procedure for the logics K, KT, and S4.
39#
發(fā)表于 2025-3-28 09:16:20 | 只看該作者
40#
發(fā)表于 2025-3-28 13:48:02 | 只看該作者
System description: CardTAP: The first theorem prover on a smart card, Due to the limited resources available on current smart cards, the prover is restricted to prepositional classical logic. It can be easily extended to full first-order logic..The potential applications for our prover lie within the context of security related functions based on trusted devices such as smart cards.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-19 10:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
台北市| 林芝县| 江北区| 辉县市| 黔东| 天长市| 永善县| 长春市| 黑山县| 类乌齐县| 舒城县| 开鲁县| 仁化县| 河间市| 江永县| 吉隆县| 铅山县| 萨迦县| 元江| 松原市| 棋牌| 木兰县| 五华县| 江口县| 中西区| 四平市| 九江市| 黄骅市| 浑源县| 奉化市| 尉氏县| 武宁县| 宜州市| 南充市| 余庆县| 麻栗坡县| 鹤庆县| 柯坪县| 岢岚县| 昔阳县| 汤原县|