找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

12345
返回列表
打印 上一主題 下一主題

Titlebook: Automated Deduction in Geometry; 9th International Wo Tetsuo Ida,Jacques Fleuriot Conference proceedings 2013 Springer-Verlag Berlin Heidel

[復(fù)制鏈接]
樓主: 帳簿
41#
發(fā)表于 2025-3-28 18:13:01 | 只看該作者
Conference proceedings 2013, held in Edinburgh, UK, in September 2012. The 10 revised full papers presented together with 2 invited papers were carefully selected during two rounds of reviewing and improvement from the lectures given at the workshop. The conference represents a forum to exchange ideas and views, to present re
42#
發(fā)表于 2025-3-28 19:50:12 | 只看該作者
Proof and Computation in Geometry, to algebraic computations. But this does not produce computer-checkable first-order proofs in geometry. We might try to produce such proofs directly, or we might try to develop a “back-translation” from algebra to geometry, following Descartes but with computer in hand. This paper discusses the rel
43#
發(fā)表于 2025-3-29 00:49:08 | 只看該作者
44#
發(fā)表于 2025-3-29 03:25:54 | 只看該作者
Improving Angular Speed Uniformity by ,, Piecewise Reparameterization, . piecewise M?bius transformation. By making use of the information provided by the first derivative of the angular speed function, the unit interval is partitioned such that the obtained reparameterization has high uniformity and continuous angular speed. An iteration process is used to refine the
45#
發(fā)表于 2025-3-29 10:57:13 | 只看該作者
Extending the Descartes Circle Theorem for Steiner ,-Cycles,r bases or resultants for the equations of inscribed or circumscribed circles. As a result, we deduced several relations that could be called the Descartes circle theorem for .?≥ 4. We succeeded in computing the defining polynomials of circumradii with degrees 4, 24, and 48, for . = 4, 5, and 6, res
46#
發(fā)表于 2025-3-29 13:58:00 | 只看該作者
47#
發(fā)表于 2025-3-29 18:51:09 | 只看該作者
48#
發(fā)表于 2025-3-29 23:45:55 | 只看該作者
From Tarski to Hilbert,s of the first twelve chapters of Schwab?user, Szmielew and Tarski’s book: .. The proofs are checked formally within classical logic using the Coq proof assistant. The goal of this development is to provide clear foundations for other formalizations of geometry and implementations of decision proced
49#
發(fā)表于 2025-3-30 03:44:45 | 只看該作者
12345
返回列表
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 13:11
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
滦南县| 上高县| 伊金霍洛旗| 梁山县| 云梦县| 平潭县| 洪泽县| 呼玛县| 阳江市| 绥滨县| 河池市| 宁河县| 丹江口市| 安宁市| 西城区| 新源县| 大姚县| 本溪| 西贡区| 东至县| 克什克腾旗| 文登市| 康定县| 江永县| 观塘区| 郑州市| 巫山县| 思茅市| 嘉黎县| 罗江县| 武鸣县| 安阳市| 会泽县| 晋江市| 葫芦岛市| 芦溪县| 子洲县| 宁化县| 北流市| 嘉兴市| 资阳市|