找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Automated Deduction in Geometry; Second International Xiao-Shan Gao,Dongming Wang,Lu Yang Conference proceedings 1999 Springer-Verlag Berli

[復制鏈接]
樓主: 偏差
31#
發(fā)表于 2025-3-27 00:03:44 | 只看該作者
32#
發(fā)表于 2025-3-27 02:31:41 | 只看該作者
33#
發(fā)表于 2025-3-27 07:13:44 | 只看該作者
34#
發(fā)表于 2025-3-27 11:15:30 | 只看該作者
35#
發(fā)表于 2025-3-27 15:06:43 | 只看該作者
Solving Geometric Problems with Real Quantifier Elimination,this note, we discuss the applicability of implemented quantifier elimination algorithms for solving geometrical problems. In particular, we demonstrate how the tools of redlog can be applied to solve a real implicitization problem, namely the Enneper surface.
36#
發(fā)表于 2025-3-27 21:47:28 | 只看該作者
Automated Discovering and Proving for Geometric Inequalities, Some well-known algorithms are complete theoreticallyb ut inefficient in practice, and cannot verify non-trivial propositions in batches. In this paper, we present an efficient algorithm to discover and prove a class of inequality-type theorems automatically by combining discriminant sequence for p
37#
發(fā)表于 2025-3-27 22:03:24 | 只看該作者
38#
發(fā)表于 2025-3-28 05:00:48 | 只看該作者
39#
發(fā)表于 2025-3-28 06:46:19 | 只看該作者
Plane Euclidean Reasoning,ectangles, circles, lines, parallelism, perpendicularity, area, orientation, inside and outside, similitudes, isometries, sine, cosine, .... It should be able to construct and transform geometric objects, to compute geometric quantities and to prove geometric theorems. It should be able to call upon
40#
發(fā)表于 2025-3-28 10:37:33 | 只看該作者
A Clifford Algebraic Method for Geometric Reasoning,tions in 2D and/or 3D Euclidean space with Clifford algebraic expression. Then we present some rules to simplify Clifford algebraic polynomials to the so-called final Clifford algebraic polynomials. The key step for proving the theorems is to check if a Clifford algebraic expression can be simplifie
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2026-1-20 10:26
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
合川市| 沅陵县| 台东县| 高邑县| 百色市| 黄浦区| 清河县| 丹阳市| 佛冈县| 若羌县| 龙川县| 德令哈市| 舟山市| 太和县| 淳安县| 杭锦旗| 莎车县| 宜春市| 武乡县| 荔浦县| 多伦县| 佛山市| 平遥县| 阆中市| 高平市| 壶关县| 运城市| 青冈县| 卫辉市| 南郑县| 柞水县| 清水县| 上思县| 邹平县| 定安县| 清新县| 淮南市| 阳高县| 南通市| 武强县| 南投县|