找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Automated Deduction in Geometry; 4th International Wo Franz Winkler Conference proceedings 2004 Springer-Verlag Berlin Heidelberg 2004 Auto

[復(fù)制鏈接]
樓主: Maculate
11#
發(fā)表于 2025-3-23 10:06:02 | 只看該作者
Giant Planets of Our Solar Systemystem of parameters such that each variety can be defined locally at the point by a?subset of this parameter system. In this paper we present two algorithms to test this property. The first one is developed for hypersurfaces only, and it has a?straightforward structure. The second copes with the gen
12#
發(fā)表于 2025-3-23 17:18:06 | 只看該作者
13#
發(fā)表于 2025-3-23 19:02:17 | 只看該作者
14#
發(fā)表于 2025-3-24 01:58:11 | 只看該作者
15#
發(fā)表于 2025-3-24 03:03:20 | 只看該作者
16#
發(fā)表于 2025-3-24 09:16:23 | 只看該作者
Giant Planets of Our Solar Systemred a?good heuristic to detect rigidities in geometric constraint satisfaction problems (GCSPs). In fact, the gap between rigidity and structural rigidity is significant and essentially resides in the fact that structural rigidity does not take geometric properties into account. In this article, we
17#
發(fā)表于 2025-3-24 13:57:35 | 只看該作者
18#
發(fā)表于 2025-3-24 15:18:49 | 只看該作者
19#
發(fā)表于 2025-3-24 19:35:03 | 只看該作者
K. Nuroh,E. Zaremba,M. J. Stottcondition, quadratic B-splines are used to approximate the given curve via orthogonal projection in Sobolev spaces. Adaptive knot removal, which is based on spline wavelets, is used to reduce the number of segments. The spline segments are implicitized. After multiplying the implicit spline segments
20#
發(fā)表于 2025-3-25 02:38:42 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 05:04
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
讷河市| 九江市| 广宗县| 喀什市| 东丽区| 新邵县| 晋城| 四会市| 米林县| 吴堡县| 新平| 余庆县| 湘西| 阿城市| 吉林省| 蒙阴县| 广水市| 鹤岗市| 普兰店市| 天长市| 沽源县| 建宁县| 垦利县| 郧西县| 津南区| 万全县| 敦煌市| 丹东市| 共和县| 九江市| 九龙城区| 攀枝花市| 黔西| 溆浦县| 中超| 德安县| 凉山| 普格县| 台湾省| 辉南县| 镇康县|