找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Automated Deduction in Geometry; 8th International Wo Pascal Schreck,Julien Narboux,Jürgen Richter-Geber Conference proceedings 2011 Spring

[復(fù)制鏈接]
樓主: GLOAT
31#
發(fā)表于 2025-3-27 00:16:57 | 只看該作者
32#
發(fā)表于 2025-3-27 01:39:16 | 只看該作者
33#
發(fā)表于 2025-3-27 05:46:34 | 只看該作者
34#
發(fā)表于 2025-3-27 11:50:34 | 只看該作者
What Is a Line ?,try creates new geometric objects (circles or conics) which can also be considered as (level 1) lines, in the sense that they fulfil Pappus axioms for lines. But Pappus theory also applies to these new lines. A formalization of Pappus geometry should enable to automatize these generalizations of lin
35#
發(fā)表于 2025-3-27 16:11:51 | 只看該作者
36#
發(fā)表于 2025-3-27 18:45:46 | 只看該作者
Thousands of Geometric Problems for Geometric Theorem Provers (TGTP), . is to create an appropriate context for testing and evaluating geometric automated theorem proving systems (GATP). For that purpose . provides a centralised common library of geometric problems with an already significant size but aiming to became large enough to ensure meaningful system evaluati
37#
發(fā)表于 2025-3-28 01:08:24 | 只看該作者
38#
發(fā)表于 2025-3-28 06:07:59 | 只看該作者
A Coherent Logic Based Geometry Theorem Prover Capable of Producing Formal and Readable Proofs,rious theories, primarily geometry. We applied the prover to various axiomatic systems and proved tens of theorems from standard university textbooks on geometry. The generated proofs can be used in different educational purposes and can contribute to the growing body of formalized mathematics. The
39#
發(fā)表于 2025-3-28 08:04:42 | 只看該作者
40#
發(fā)表于 2025-3-28 11:18:19 | 只看該作者
Exploring the Foundations of Discrete Analytical Geometry in Isabelle/HOL,lly prove that the algorithmic approximation produced can be made to be infinitely-close to its continuous counterpart. This enables the discretization of continuous functions and of geometric concepts such as the straight line and ellipse and acts as the starting point for the field of discrete analytical geometry.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-19 02:34
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
崇文区| 南川市| 白沙| 宜丰县| 邵阳市| 潮州市| 济源市| 东阳市| 顺平县| 清水县| 郧西县| 丹凤县| 横峰县| 库车县| 霍邱县| 天峨县| 车致| 兴化市| 柳州市| 河间市| 阆中市| 清河县| 章丘市| 吉安市| 乐业县| 岚皋县| 吕梁市| 柳河县| 景德镇市| 荥经县| 陈巴尔虎旗| 溧阳市| 余江县| 婺源县| 龙海市| 乐清市| 南陵县| 靖宇县| 如东县| 桦甸市| 乌审旗|