找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

1234567
返回列表
打印 上一主題 下一主題

Titlebook: Automata, Languages, and Programming; 39th International C Artur Czumaj,Kurt Mehlhorn,Roger Wattenhofer Conference proceedings 2012 Springe

[復(fù)制鏈接]
樓主: Definite
61#
發(fā)表于 2025-4-1 03:16:21 | 只看該作者
https://doi.org/10.1007/978-3-8350-5487-5for Basic CCS and Basic Process Algebra, as a means for defining synchronization trees up to isomorphism as well as modulo bisimilarity and language equivalence. The expressiveness of algebraic recursion schemes is also compared to that of the low levels in the Caucal hierarchy.
62#
發(fā)表于 2025-4-1 09:42:54 | 只看該作者
,Thesenf?rmige Zusammenfassung, up to a given error .?>?0 and computing a finite representation of an .-optimal strategy. We show that these problems are solvable in exponential time for a given configuration, and we also show that they are computationally hard in the sense that a polynomial-time approximation algorithm cannot exist unless P=NP.
63#
發(fā)表于 2025-4-1 11:13:29 | 只看該作者
Algebraic Synchronization Trees and Processesfor Basic CCS and Basic Process Algebra, as a means for defining synchronization trees up to isomorphism as well as modulo bisimilarity and language equivalence. The expressiveness of algebraic recursion schemes is also compared to that of the low levels in the Caucal hierarchy.
64#
發(fā)表于 2025-4-1 16:50:17 | 只看該作者
Minimizing Expected Termination Time in One-Counter Markov Decision Processes up to a given error .?>?0 and computing a finite representation of an .-optimal strategy. We show that these problems are solvable in exponential time for a given configuration, and we also show that they are computationally hard in the sense that a polynomial-time approximation algorithm cannot exist unless P=NP.
1234567
返回列表
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 00:47
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
观塘区| 常州市| 合江县| 缙云县| 连江县| 山阴县| 珲春市| 禹城市| 图们市| 三亚市| 灵山县| 类乌齐县| 张家口市| 大厂| 鄂托克前旗| 奉化市| 宜兰县| 南充市| 额济纳旗| 日照市| 吉木乃县| 阳山县| 南皮县| 南召县| 文化| 永新县| 赣榆县| 利川市| 左贡县| 宝坻区| 衢州市| 富阳市| 韶关市| 塔河县| 东城区| 安龙县| 竹溪县| 天峨县| 大新县| 贡觉县| 鄢陵县|