找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Auto-Grader - Auto-Grading Free Text Answers; Robin Richner Book 2022 The Editor(s) (if applicable) and The Author(s), under exclusive lic

[復(fù)制鏈接]
樓主: 熱情美女
11#
發(fā)表于 2025-3-23 11:22:19 | 只看該作者
https://doi.org/10.1007/978-3-531-94266-7As follows the research problem, objective and anticipated contribution are stated.
12#
發(fā)表于 2025-3-23 15:23:51 | 只看該作者
13#
發(fā)表于 2025-3-23 22:06:25 | 只看該作者
https://doi.org/10.1007/978-3-531-94266-7Firstly, this chapter will introduce the technological background needed to understand how a state-of-the-art auto-grader may look and secondly elaborate on related work in the field of automatic grading.
14#
發(fā)表于 2025-3-23 23:03:44 | 只看該作者
https://doi.org/10.1007/978-3-531-94266-7This chapter commences with a description of the provided data, continues with an analysis and preprocessing of the data and ends with a preprocessed data set in the form of a pandas dataframe as a base for the model development. Note that there will still be adjustments to the data depending on the model approach as outlined in chapter 5.
15#
發(fā)表于 2025-3-24 06:05:42 | 只看該作者
https://doi.org/10.1007/978-3-531-94266-7There are five models described as follows which can be divided into three categories. The models in the categories differ in their data augmentation strategy and in their architecture. Data augmentation refers to how the data is fed into the model. The architecture refers to the specific neural networks used.
16#
發(fā)表于 2025-3-24 10:01:44 | 只看該作者
https://doi.org/10.1007/978-3-531-94266-7This chapter discusses the thesis, elaborates on the limitations and further research opportunities. Hereby, it is divided into preprocessing, data augmentation, pre-training, fine-tuning, and bias.
17#
發(fā)表于 2025-3-24 13:57:31 | 只看該作者
https://doi.org/10.1007/978-3-531-94266-7The thesis introduced the time constraint that teachers face when it comes to grading free text answer questions. The objective was to create a system that would assist teachers to save time on that task. It could be seen that related work consists of various AI and non AI-based approaches and dates back to 1964.
18#
發(fā)表于 2025-3-24 18:55:48 | 只看該作者
19#
發(fā)表于 2025-3-24 21:40:07 | 只看該作者
20#
發(fā)表于 2025-3-25 00:15:54 | 只看該作者
Research Background,Firstly, this chapter will introduce the technological background needed to understand how a state-of-the-art auto-grader may look and secondly elaborate on related work in the field of automatic grading.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 07:49
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
额尔古纳市| 彰化县| 八宿县| 盐山县| 邢台市| 澄迈县| 虞城县| 承德市| 从化市| 台南市| 云霄县| 永定县| 大厂| 如东县| 高雄市| 彭阳县| 七台河市| 喜德县| 宁南县| 通山县| 桂平市| 四会市| 长宁县| 杨浦区| 尼勒克县| 长沙县| 抚远县| 蕲春县| 汝州市| 微山县| 玉环县| 尖扎县| 收藏| 库伦旗| 柏乡县| 迁西县| 新巴尔虎右旗| 成安县| 凤山县| 全南县| 葫芦岛市|