找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Aufl?sung von Kristallen; Theorie und technisc Robert Bertram Heimann Book 1975 Springer-Verlag Wien 1975 ?tzfigur

[復制鏈接]
樓主: gingerly
21#
發(fā)表于 2025-3-25 03:41:13 | 只看該作者
22#
發(fā)表于 2025-3-25 09:39:13 | 只看該作者
Helen Peterson,Birgitta Jordanssonl?sung von Frank [178] und ihre Anwendung auf die Bildung von ?tzgruben durch Cabrera [91]. Frank beschreibt den L?sungsproze? als Verschiebung von Stufen der atomaren H?he . l?ngs einer dichtgepackten Kristalloberfl?che (Abb.16)..
23#
發(fā)表于 2025-3-25 13:45:57 | 只看該作者
24#
發(fā)表于 2025-3-25 16:34:18 | 只看該作者
Gendered Success in Higher Educationm, die man aus einer konvexen Einkristallkugel erh?lt., Als Beispiel seien die Schnittfiguren gezeigt, die bei der ?tzung eines CdS-Kristalls mit Wurtzit-Struktur in HCl bzw. HNO. entstehen ([644], vgl. auch [304]; Abb. 1).
25#
發(fā)表于 2025-3-25 23:45:03 | 只看該作者
Geometrisch-kinematische Theorien der ?tzgrubenbildungm, die man aus einer konvexen Einkristallkugel erh?lt., Als Beispiel seien die Schnittfiguren gezeigt, die bei der ?tzung eines CdS-Kristalls mit Wurtzit-Struktur in HCl bzw. HNO. entstehen ([644], vgl. auch [304]; Abb. 1).
26#
發(fā)表于 2025-3-26 01:28:16 | 只看該作者
Diffusions-Theorieneklammert. Die besonderen geometrischen Verh?ltnisse an ?tzgruben in bezug auf die mehr oder weniger ungest?rten intakten Kristallfl?chen der Umgebung zwingen uns, die Diffusion als geschwindigkeitsbestimmenden Schritt bei der Bildung einer ?tzgrube n?her zu betrachten.
27#
發(fā)表于 2025-3-26 04:51:34 | 只看該作者
28#
發(fā)表于 2025-3-26 10:53:01 | 只看該作者
29#
發(fā)表于 2025-3-26 16:09:27 | 只看該作者
30#
發(fā)表于 2025-3-26 20:44:00 | 只看該作者
Geometrisch-kinematische Theorien der ?tzgrubenbildunghenelementen. begrenzte Einsenkungen in die Oberfl?che. Die Symmetrie dieser Einsenkungen entspricht meist der Fl?chensymmetrie (vgl. 7.1.). Durch fl?chenspezifische Adsorption (Kleber [341]) asymmetrischer Molekülkomplexe, z. B. optisch aktiver S?uren kann Symmetrieverminderung (Hypomorphie) der ?t
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 00:21
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
静宁县| 江陵县| 赤城县| 喜德县| 竹北市| 南丰县| 浦东新区| 宜昌市| 页游| 德兴市| 五常市| 理塘县| 汉川市| 哈尔滨市| 东乡族自治县| 揭东县| 德庆县| 文昌市| 车致| 交口县| 个旧市| 凤阳县| 恩平市| 德兴市| 东乡县| 宁陵县| 宁夏| 锡林浩特市| 安仁县| 芦溪县| 富顺县| 酉阳| 武城县| 额济纳旗| 渝中区| 托克托县| 樟树市| 临颍县| 余庆县| 奎屯市| 本溪|