找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Audio- and Video-Based Biometric Person Authentication; 5th International Co Takeo Kanade,Anil Jain,Nalini K. Ratha Conference proceedings

[復(fù)制鏈接]
51#
發(fā)表于 2025-3-30 12:05:37 | 只看該作者
52#
發(fā)表于 2025-3-30 14:33:39 | 只看該作者
Magnetic Fields in Irregular Galaxieslarity measure is adopted as the matching criterion. Four wavelet filters containing Haar, Daubechies-8, Biorthogonal 3.5, and Biorthogonal 4.4 are evaluated and they all perform better than the feature of Gaussian-Hermite moments. Experimental results demonstrate that the proposed features can provide promising performance for iris recognition.
53#
發(fā)表于 2025-3-30 19:36:06 | 只看該作者
54#
發(fā)表于 2025-3-30 22:24:03 | 只看該作者
Head-on collisions and rings of fire,eference subspace, representing learnt identity. To extract effective features for identification both subspaces are projected onto multiple constraint subspaces. For generating constraint subspaces we apply ensemble learning algorithms, i.e. Bagging and Boosting. Through experimental results we show the effectiveness of our method.
55#
發(fā)表于 2025-3-31 04:40:52 | 只看該作者
https://doi.org/10.1007/978-94-009-4702-3ngle hand-labeled model graph. We apply the model to the representation, recognition and reconstruction of nine different facial expressions. After training, the model is capable of automatically finding facial landmarks, extracting deformation parameters and reconstructing faces in any of the learned expressions.
56#
發(fā)表于 2025-3-31 05:42:51 | 只看該作者
57#
發(fā)表于 2025-3-31 11:30:55 | 只看該作者
Specific Texture Analysis for Iris Recognitionn the CASIA database in verification mode and show an EER of 0.07%. Degraded version of the CASIA database results in an EER of 2.3%, which is lower than result obtained by the classical wavelet demodulation (WD) method in that database.
58#
發(fā)表于 2025-3-31 16:43:22 | 只看該作者
Face Recognition with the Multiple Constrained Mutual Subspace Methodeference subspace, representing learnt identity. To extract effective features for identification both subspaces are projected onto multiple constraint subspaces. For generating constraint subspaces we apply ensemble learning algorithms, i.e. Bagging and Boosting. Through experimental results we show the effectiveness of our method.
59#
發(fā)表于 2025-3-31 20:35:56 | 只看該作者
A Flexible Object Model for Recognising and Synthesising Facial Expressionsngle hand-labeled model graph. We apply the model to the representation, recognition and reconstruction of nine different facial expressions. After training, the model is capable of automatically finding facial landmarks, extracting deformation parameters and reconstructing faces in any of the learned expressions.
60#
發(fā)表于 2025-3-31 22:42:24 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-23 21:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
龙江县| 昭平县| 宜兰县| 西充县| 柘城县| 青海省| 内乡县| 大冶市| 西平县| 宿松县| 长阳| 温泉县| 苍溪县| 景泰县| 东兰县| 杂多县| 鱼台县| 安庆市| 桓仁| 屏山县| 泗水县| 青神县| 定结县| 顺昌县| 南宁市| 乌拉特后旗| 吉木萨尔县| 江阴市| 昭平县| 丹巴县| 海淀区| 无为县| 微山县| 田林县| 沁水县| 孙吴县| 水城县| 华池县| 浮山县| 广灵县| 宁河县|