找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Attractors for infinite-dimensional non-autonomous dynamical systems; Alexandre N. Carvalho,José A. Langa,James C. Robin Book 2013 Springe

[復(fù)制鏈接]
樓主: Exacting
41#
發(fā)表于 2025-3-28 16:25:19 | 只看該作者
G Protein-Coupled Receptor Screening Assaysear underlying structure (like a Lyapunov function, for example), the application of the more ‘global’ results of these two chapters (existence of a finite-dimensional pullback attractor) is essentially as far as one can currently proceed.
42#
發(fā)表于 2025-3-28 21:59:14 | 只看該作者
43#
發(fā)表于 2025-3-29 01:31:56 | 只看該作者
44#
發(fā)表于 2025-3-29 06:19:53 | 只看該作者
45#
發(fā)表于 2025-3-29 08:56:15 | 只看該作者
The Navier–Stokes equations with non-autonomous forcingear underlying structure (like a Lyapunov function, for example), the application of the more ‘global’ results of these two chapters (existence of a finite-dimensional pullback attractor) is essentially as far as one can currently proceed.
46#
發(fā)表于 2025-3-29 13:50:05 | 只看該作者
47#
發(fā)表于 2025-3-29 18:13:24 | 只看該作者
48#
發(fā)表于 2025-3-29 21:03:43 | 只看該作者
49#
發(fā)表于 2025-3-30 00:01:22 | 只看該作者
50#
發(fā)表于 2025-3-30 07:20:35 | 只看該作者
Appendix: Skew-product flows and the uniform attractorns and uniformly .: . Note that while this uniform attractor is a fixed subset of the phase space and is ‘a(chǎn)ttracting’, one cannot speak of the ‘dynamics on the uniform attractor’. The property of invariance of the global or non-autonomous attractor has been replaced by minimality (Definition 16.8).
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-23 06:33
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
盐津县| 虹口区| 西畴县| 三亚市| 图们市| 商洛市| 闵行区| 和静县| 渭源县| 拉萨市| 修武县| 临西县| 剑河县| 河源市| 利津县| 土默特右旗| 屏南县| 桦南县| 侯马市| 儋州市| 南投县| 樟树市| 天柱县| 永吉县| 苍梧县| 沙河市| 衢州市| 合川市| 红桥区| 双鸭山市| 湛江市| 台南县| 兴海县| 祁连县| 盐山县| 句容市| 博爱县| 永春县| 璧山县| 衡南县| 越西县|