找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Attractors for infinite-dimensional non-autonomous dynamical systems; Alexandre N. Carvalho,José A. Langa,James C. Robin Book 2013 Springe

[復(fù)制鏈接]
樓主: Exacting
41#
發(fā)表于 2025-3-28 16:25:19 | 只看該作者
G Protein-Coupled Receptor Screening Assaysear underlying structure (like a Lyapunov function, for example), the application of the more ‘global’ results of these two chapters (existence of a finite-dimensional pullback attractor) is essentially as far as one can currently proceed.
42#
發(fā)表于 2025-3-28 21:59:14 | 只看該作者
43#
發(fā)表于 2025-3-29 01:31:56 | 只看該作者
44#
發(fā)表于 2025-3-29 06:19:53 | 只看該作者
45#
發(fā)表于 2025-3-29 08:56:15 | 只看該作者
The Navier–Stokes equations with non-autonomous forcingear underlying structure (like a Lyapunov function, for example), the application of the more ‘global’ results of these two chapters (existence of a finite-dimensional pullback attractor) is essentially as far as one can currently proceed.
46#
發(fā)表于 2025-3-29 13:50:05 | 只看該作者
47#
發(fā)表于 2025-3-29 18:13:24 | 只看該作者
48#
發(fā)表于 2025-3-29 21:03:43 | 只看該作者
49#
發(fā)表于 2025-3-30 00:01:22 | 只看該作者
50#
發(fā)表于 2025-3-30 07:20:35 | 只看該作者
Appendix: Skew-product flows and the uniform attractorns and uniformly .: . Note that while this uniform attractor is a fixed subset of the phase space and is ‘a(chǎn)ttracting’, one cannot speak of the ‘dynamics on the uniform attractor’. The property of invariance of the global or non-autonomous attractor has been replaced by minimality (Definition 16.8).
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-23 12:14
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
新津县| 九龙坡区| 甘孜| 成安县| 开化县| 澄江县| 伊宁市| 长乐市| 河西区| 衡阳市| 文登市| 区。| 无为县| 庆城县| 响水县| 内江市| 深水埗区| 巨野县| 古蔺县| 定兴县| 汝南县| 炉霍县| 教育| 吉林省| 鹿邑县| 洱源县| 高阳县| 彩票| 邢台市| 正宁县| 通海县| 十堰市| 盐源县| 祁连县| 昌平区| 牡丹江市| 垫江县| 绿春县| 日土县| 济宁市| 遵义县|