找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Attractors Under Discretisation; Xiaoying Han,Peter Kloeden Book 2017 The Author(s) 2017 One step numerical schemes.Autonomous dynamicl sy

[復(fù)制鏈接]
11#
發(fā)表于 2025-3-23 11:48:24 | 只看該作者
12#
發(fā)表于 2025-3-23 17:48:11 | 只看該作者
Produktdesign: Materialeigenschaften,Saddle points for Euler schemes for ODEs are discussed. Numerical stable and unstable manifolds are illustrated through a set of examples, and compared to the stable and unstable manifolds of the ODEs. The shadowing phenomenon is briefly illustrated. Finally, Beyn’s Theorem is presented.
13#
發(fā)表于 2025-3-23 19:21:14 | 只看該作者
Ram K. Mishra,Glen B. Baker,Alan A. BoultonEuler schemes for dissipative ODE systems with attractors are presented and shown to possess numerical attractors that converge to the ODE attractors upper semi continuously. A counterexample shows that the numerical attractor need not convergence lower semi continuously.
14#
發(fā)表于 2025-3-23 22:21:50 | 只看該作者
15#
發(fā)表于 2025-3-24 04:03:18 | 只看該作者
16#
發(fā)表于 2025-3-24 09:56:12 | 只看該作者
Stephanie J. Walker,H. Alex BrownNonautonomous dynamical systems and their omega limit sets are defined. The concepts of positive and negative asymptotic invariance are defined. The omega limit sets for dissipative nonautonomous dynamical systems are shown to be positive and negative asymptotic invariant under certain conditions.
17#
發(fā)表于 2025-3-24 12:48:07 | 只看該作者
https://doi.org/10.1385/1592594301Numerical nonautonomous omega limit sets for nonautonomous ODEs are constructed by using the implicit Euler scheme and shown to converge to the omega limit sets for the ODEs upper semi continuously.
18#
發(fā)表于 2025-3-24 17:57:23 | 只看該作者
19#
發(fā)表于 2025-3-24 21:54:44 | 只看該作者
Patricia M. Hinkle,John A. PuskasPullback and forward attractors for skew product flows are introduced, then the implicit Euler numerical scheme is applied to obtain a discrete time skew product flow. Existence of a numerical attractor for this discrete time skew product flow is established for sufficiently small step size.
20#
發(fā)表于 2025-3-25 00:29:07 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 19:22
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
荔波县| 夏津县| 汉寿县| 吐鲁番市| 揭西县| 延寿县| 青神县| 兴和县| 翁牛特旗| 莒南县| 遵化市| 深州市| 当雄县| 邵东县| 米脂县| 龙口市| 吉水县| 色达县| 于田县| 宣恩县| 雷山县| 环江| 沈阳市| 榆中县| 明溪县| 张家口市| 钟山县| 东乌| 广汉市| 金山区| 宽城| 巍山| 焉耆| 武宣县| 霍林郭勒市| 中山市| 张家口市| 巧家县| 金秀| 仙桃市| 三河市|