找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Attacks, Defenses and Testing for Deep Learning; Jinyin Chen,Ximin Zhang,Haibin Zheng Book 2024 The Editor(s) (if applicable) and The Auth

[復(fù)制鏈接]
樓主: risky-drinking
31#
發(fā)表于 2025-3-26 22:29:05 | 只看該作者
32#
發(fā)表于 2025-3-27 02:59:45 | 只看該作者
33#
發(fā)表于 2025-3-27 05:48:00 | 只看該作者
Neuron-Level Inverse Perturbation Against Adversarial Attackson, especially when deployed in security-critical domains. Numerous defense methods, including reactive and proactive ones, have been proposed for model robustness improvement. The former ones, such as conducting transformations to remove perturbations, usually fail to handle large perturbations via
34#
發(fā)表于 2025-3-27 12:12:49 | 只看該作者
35#
發(fā)表于 2025-3-27 16:04:03 | 只看該作者
Defense Against Free-Rider Attack from?the?Weight Evolving Frequencyuted machine learning. Although federated learning has gained an unprecedented success in data privacy preservation, its frailty of vulnerability to “free-rider” attacks attracts increasing attention. A number of defenses against free-rider attacks have been proposed for FL. Nevertheless, these meth
36#
發(fā)表于 2025-3-27 19:40:47 | 只看該作者
An Effective Model Copyright Protection for?Federated Learning its excellent performance and significant profits, it has been applied to a wide range of practical areas. . has become a major issue. It is possible that FL could benefit from the existing property rights protection methods in centralized scenarios, such as watermark embedding and model fingerprin
37#
發(fā)表于 2025-3-27 22:40:45 | 只看該作者
38#
發(fā)表于 2025-3-28 05:32:10 | 只看該作者
Using Adversarial Examples to against Backdoor Attack in Federated Learningared global model. Unluckily, by uploading a carefully crafted updated model, a malicious client can insert a backdoor into the global model during federated learning training. Many secure aggregation policies and robust training protocols have been proposed to protect against backdoor attacks in FL
39#
發(fā)表于 2025-3-28 07:14:18 | 只看該作者
40#
發(fā)表于 2025-3-28 12:10:02 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-24 08:58
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
靖边县| 龙川县| 清徐县| 丹东市| 西丰县| 乌兰察布市| 布尔津县| 崇礼县| 舟山市| 昌平区| 揭西县| 新宾| 谷城县| 宜兰市| 济南市| 沾益县| 张家口市| 株洲县| 乌苏市| 彭泽县| 墨竹工卡县| 满洲里市| 鹤庆县| 三都| 永昌县| 蕉岭县| 普安县| 陇川县| 黄陵县| 轮台县| 阿图什市| 常熟市| 宁阳县| 监利县| 兴山县| 丰县| 双城市| 新巴尔虎左旗| 大田县| 双鸭山市| 西林县|