找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Asymptotics beyond All Orders; Harvey Segur,Saleh Tanveer,Herbert Levine Book 1991 Springer Science+Business Media New York 1991 Renormali

[復制鏈接]
樓主: solidity
21#
發(fā)表于 2025-3-25 03:40:00 | 只看該作者
22#
發(fā)表于 2025-3-25 08:02:07 | 只看該作者
23#
發(fā)表于 2025-3-25 13:57:37 | 只看該作者
Helen Parkhurst and the Dalton School,Patterns formed by the instabilities in propagating interfaces between different phases have received much attention. in recent years. One of the well known examples is the Saffman-Taylor problem in a Hele-Shaw cell., where an unique finger pattern is observed when a viscous fluid is displaced by a less viscous fluid.
24#
發(fā)表于 2025-3-25 18:41:46 | 只看該作者
Marietta Johnson and the Organic School,The rapidly forced pendulum equation with forcing δ sin t/ε, where δ = δ. ε., p = 5, for δ., ε sufficiently small, is considered. We sketch our proof that stable and unstable manifolds split and that the splitting distance d(t.) in the ?-t plane satisfies.and the angle of transversal intersection, ψ, in the t = 0 section satisfies ..
25#
發(fā)表于 2025-3-25 20:46:04 | 只看該作者
https://doi.org/10.1007/978-1-137-05475-3This paper concerns with the split of a separatrix of a nonlinear pendulum by a small but rapid sinsusoidal forcing. A partial answer is given, with main result, road map and proof of δ-asymptotic expansion.
26#
發(fā)表于 2025-3-26 01:01:04 | 只看該作者
https://doi.org/10.1007/978-94-007-1848-7The solutions of the equation . are discussed in the limit as ε → 0. This equation arises as a connection problem in the theory of resonant oscillations in a tank..
27#
發(fā)表于 2025-3-26 06:04:10 | 只看該作者
Michael J. Munkert,Klaus KüspertThis paper generalizes the Pokrovskii-Khalatnikov method to calculate the actual behavior of the reflection coefficient for singular problems, which vanishes to all orders in the small parameter e. Two different classes of reflection coefficient problems are considered.
28#
發(fā)表于 2025-3-26 08:42:48 | 只看該作者
29#
發(fā)表于 2025-3-26 14:04:14 | 只看該作者
30#
發(fā)表于 2025-3-26 19:13:39 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-18 20:09
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
宣武区| 梁平县| 库尔勒市| 霍林郭勒市| 石阡县| 株洲市| 客服| 曲松县| 湄潭县| 连江县| 公主岭市| 游戏| 织金县| 镇原县| 弋阳县| 千阳县| 梅河口市| 北海市| 白城市| 兴文县| 塔河县| 湟中县| 喀喇沁旗| 三穗县| 格尔木市| 建阳市| 山东| 辽宁省| 玉山县| 仪征市| 醴陵市| 常山县| 浦北县| 仪征市| 秦皇岛市| 江达县| 辉南县| 扶余县| 镇安县| 博客| 潜江市|