找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Asymptotically Safe Gravity; From Spacetime Folia Alessia Benedetta Platania Book 2018 Springer Nature Switzerland AG 2018 Asymptotic Safet

[復(fù)制鏈接]
樓主: 出租
11#
發(fā)表于 2025-3-23 13:14:47 | 只看該作者
12#
發(fā)表于 2025-3-23 16:56:39 | 只看該作者
https://doi.org/10.1007/978-1-4302-0327-8 require the introduction of new physics. An exception is the Asymptotic Safety scenario for Quantum Gravity, which is based on pure Quantum Field Theory. It builds on the generalized notion of renormalizability naturally arising from the Wilsonian Renormalization Group.
13#
發(fā)表于 2025-3-23 20:41:46 | 只看該作者
14#
發(fā)表于 2025-3-24 02:15:26 | 只看該作者
15#
發(fā)表于 2025-3-24 05:39:29 | 只看該作者
Quantum Gravity on Foliated Spacetimesy requires the spacetime to be Lorentzian, the EAA is defined by means of a Euclidean path integral. In the context of Quantum Field Theory, the Lorentzian signature can be recovered by Wick-rotating all time-like quantities.
16#
發(fā)表于 2025-3-24 07:51:01 | 只看該作者
Conclusionsxed points of the renormalization group flow. On this basis, gravity may result in a finite and predictive quantum theory if its flow converges to a Non-Gaussian Fixed Point (NGFP) in the ultraviolet limit.
17#
發(fā)表于 2025-3-24 10:46:51 | 只看該作者
https://doi.org/10.1007/978-1-4302-0327-8ell tested theory known as Standard Model (SM) of particle physics. Similarly, General Relativity provides a successful description of the gravitational interaction and most of its predictions have been confirmed by observations. Although Standard Model and General Relativity show a very good agreem
18#
發(fā)表于 2025-3-24 18:43:37 | 只看該作者
https://doi.org/10.1007/978-1-4302-0327-8fected by unphysical ultraviolet divergences. For instance, a systematic study of scattering amplitudes in Quantum Electrodynamics show that, due to the singular high-energy behavior of the theory, Feynman diagrams containing loops result in an infinite contribution to the transition amplitude.
19#
發(fā)表于 2025-3-24 19:41:15 | 只看該作者
20#
發(fā)表于 2025-3-25 00:20:40 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 04:29
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
高密市| 乐平市| 华池县| 望城县| 金门县| 桐柏县| 河北区| 宜昌市| 武强县| 项城市| 黔西| 莱芜市| 突泉县| 阳谷县| 堆龙德庆县| 伽师县| 高州市| 英吉沙县| 鄢陵县| 称多县| 常山县| 西盟| 淮滨县| 金川县| 西宁市| 泗阳县| 濉溪县| 六盘水市| 阿荣旗| 梧州市| 乐至县| 韩城市| 花莲市| 舒兰市| 新巴尔虎右旗| 钦州市| 大邑县| 梅州市| 黔江区| 儋州市| 沂源县|