找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Asymptotically Safe Gravity; From Spacetime Folia Alessia Benedetta Platania Book 2018 Springer Nature Switzerland AG 2018 Asymptotic Safet

[復制鏈接]
樓主: 出租
11#
發(fā)表于 2025-3-23 13:14:47 | 只看該作者
12#
發(fā)表于 2025-3-23 16:56:39 | 只看該作者
https://doi.org/10.1007/978-1-4302-0327-8 require the introduction of new physics. An exception is the Asymptotic Safety scenario for Quantum Gravity, which is based on pure Quantum Field Theory. It builds on the generalized notion of renormalizability naturally arising from the Wilsonian Renormalization Group.
13#
發(fā)表于 2025-3-23 20:41:46 | 只看該作者
14#
發(fā)表于 2025-3-24 02:15:26 | 只看該作者
15#
發(fā)表于 2025-3-24 05:39:29 | 只看該作者
Quantum Gravity on Foliated Spacetimesy requires the spacetime to be Lorentzian, the EAA is defined by means of a Euclidean path integral. In the context of Quantum Field Theory, the Lorentzian signature can be recovered by Wick-rotating all time-like quantities.
16#
發(fā)表于 2025-3-24 07:51:01 | 只看該作者
Conclusionsxed points of the renormalization group flow. On this basis, gravity may result in a finite and predictive quantum theory if its flow converges to a Non-Gaussian Fixed Point (NGFP) in the ultraviolet limit.
17#
發(fā)表于 2025-3-24 10:46:51 | 只看該作者
https://doi.org/10.1007/978-1-4302-0327-8ell tested theory known as Standard Model (SM) of particle physics. Similarly, General Relativity provides a successful description of the gravitational interaction and most of its predictions have been confirmed by observations. Although Standard Model and General Relativity show a very good agreem
18#
發(fā)表于 2025-3-24 18:43:37 | 只看該作者
https://doi.org/10.1007/978-1-4302-0327-8fected by unphysical ultraviolet divergences. For instance, a systematic study of scattering amplitudes in Quantum Electrodynamics show that, due to the singular high-energy behavior of the theory, Feynman diagrams containing loops result in an infinite contribution to the transition amplitude.
19#
發(fā)表于 2025-3-24 19:41:15 | 只看該作者
20#
發(fā)表于 2025-3-25 00:20:40 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-12 13:47
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
文水县| 和平县| 旺苍县| 青浦区| 昂仁县| 南阳市| 如皋市| 鹿泉市| 三穗县| 灵川县| 抚顺市| 东乡族自治县| 新建县| 金坛市| 诏安县| 平乡县| 衡阳县| 怀仁县| 阳朔县| 武川县| 电白县| 外汇| 承德市| 古田县| 长沙县| 高台县| 奈曼旗| 山阴县| 辽宁省| 隆回县| 拉萨市| 平陆县| 柳林县| 嵊泗县| 周宁县| 林甸县| 江都市| 清原| 达尔| 修文县| 莎车县|