找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Asymptotic, Algebraic and Geometric Aspects of Integrable Systems; In Honor of Nalini J Frank Nijhoff,Yang Shi,Da-jun Zhang Conference proc

[復制鏈接]
樓主: Pessimistic
31#
發(fā)表于 2025-3-26 23:29:39 | 只看該作者
32#
發(fā)表于 2025-3-27 04:22:56 | 只看該作者
Springer Proceedings in Mathematics & Statisticshttp://image.papertrans.cn/b/image/163845.jpg
33#
發(fā)表于 2025-3-27 06:22:35 | 只看該作者
34#
發(fā)表于 2025-3-27 11:46:30 | 只看該作者
35#
發(fā)表于 2025-3-27 15:15:14 | 只看該作者
36#
發(fā)表于 2025-3-27 20:28:10 | 只看該作者
https://doi.org/10.1007/978-3-7091-4328-5gular rational solutions have appeared with different names in a variety of nonlinear systems, say, algebraic solitons, algebraic solitrary waves and lump solutions etc. More importantly, these nonsingular rational solutions have played a key role in the study of rogue waves. In the paper, we will d
37#
發(fā)表于 2025-3-28 01:31:29 | 只看該作者
Basic Concepts of Functional Analysis,of the Gauss hypergeometric equation to produce the Kummer hypergeometric equation with an irregular singularity at infinity. We show how to pass from solutions with power-like behaviour which are analytic in disks, to solutions with exponential behaviour which are analytic in sectors and have diver
38#
發(fā)表于 2025-3-28 04:36:37 | 只看該作者
Foundations of the Theory of Parthooddratic vector fields). Kahan’s method has attracted much interest due to the fact that it preserves many of the geometrical properties of the original continuous system. In particular, a large number of Hamiltonian systems of quadratic vector fields are known for which their Kahan discretization is
39#
發(fā)表于 2025-3-28 09:09:24 | 只看該作者
40#
發(fā)表于 2025-3-28 10:33:36 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-23 14:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
田林县| 中山市| 多伦县| 宽城| 乌什县| 科技| 兴海县| 会同县| 翼城县| 阳东县| 施甸县| 抚松县| 临朐县| 大姚县| 卓尼县| 精河县| 昌图县| 平昌县| 牟定县| 那曲县| 乌苏市| 宕昌县| 丰宁| 余庆县| 泸西县| 普定县| 华蓥市| 清徐县| 任丘市| 广灵县| 峨眉山市| 河西区| 磴口县| 聂拉木县| 云龙县| 延津县| 綦江县| 巨野县| 集贤县| 玛多县| 惠来县|