找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Asymptotic methods in mechanics of solids; Svetlana M. Bauer,Sergei B. Filippov,Rémi Vaillanc Book 2015 Springer International Publishing

[復制鏈接]
樓主: 喝水
11#
發(fā)表于 2025-3-23 12:07:22 | 只看該作者
Margreet Boersma-de Jong,Gjalt de JongIn this chapter, we study systems of linear differential equations with variable coefficients.
12#
發(fā)表于 2025-3-23 14:46:15 | 只看該作者
13#
發(fā)表于 2025-3-23 21:44:04 | 只看該作者
https://doi.org/10.1007/978-3-642-58093-2There are several types of asymptotic expansions for the solutions of nonlinear differential equations. Regularly perturbed nonlinear equations were considered in Chap.?..
14#
發(fā)表于 2025-3-24 01:33:00 | 只看該作者
Asymptotic Estimates,In this chapter, asymptotic estimates for functions, algebraic and transcendental equations are considered.
15#
發(fā)表于 2025-3-24 02:38:34 | 只看該作者
16#
發(fā)表于 2025-3-24 10:29:45 | 只看該作者
Regular Perturbation of Ordinary Differential Equations,In this chapter we find asymptotic solutions of regularly perturbed equations and systems of equations, to which problems in mechanics are reduced. We consider Cauchy problems, problems for periodic solutions and boundary value problems.
17#
發(fā)表于 2025-3-24 12:46:37 | 只看該作者
Singularly Perturbed Linear Ordinary Differential Equations,In this chapter, we study systems of linear differential equations with variable coefficients.
18#
發(fā)表于 2025-3-24 16:55:53 | 只看該作者
Singularly Perturbed Linear Ordinary Differential Equations with Turning Points,In this chapter, we consider systems of linear ordinary differential equations with variable coefficients and a small parameter . in the derivative terms.
19#
發(fā)表于 2025-3-24 20:13:38 | 只看該作者
20#
發(fā)表于 2025-3-25 02:29:10 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-14 22:28
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
西盟| 黄平县| 诸城市| 尉氏县| 宾阳县| 宜阳县| 文成县| 东台市| 句容市| 亳州市| 肥东县| 两当县| 印江| 平罗县| 浮梁县| 伊金霍洛旗| 安远县| 临湘市| 怀安县| 容城县| 加查县| 汕尾市| 石林| 平泉县| 江永县| 屯门区| 麻城市| 兴仁县| 崇礼县| 赤峰市| 五华县| 常宁市| 兴国县| 株洲县| 略阳县| 盖州市| 垦利县| 临邑县| 新龙县| 香格里拉县| 石楼县|