找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Asymptotic Theory of Elliptic Boundary Value Problems in Singularly Perturbed Domains; Volume I Vladimir Maz’ya,Serguei Nazarov,Boris A. Pl

[復制鏈接]
樓主: monster
31#
發(fā)表于 2025-3-27 00:18:38 | 只看該作者
32#
發(fā)表于 2025-3-27 02:42:10 | 只看該作者
On the Expressiveness and Complexity of ,onsider eigenvalues of polynomial operator pencils from the same point of view. Such problems arise in a natural way when we investigate singularities of solutions of boundary value problems in domains with conic points.
33#
發(fā)表于 2025-3-27 06:54:53 | 只看該作者
https://doi.org/10.1007/978-3-0348-8434-1Boundary value problem; Eigenvalue; Laplace operator; Partial differential equations; differential equat
34#
發(fā)表于 2025-3-27 10:08:36 | 只看該作者
978-3-0348-9565-1Birkh?user Verlag 2000
35#
發(fā)表于 2025-3-27 15:06:16 | 只看該作者
36#
發(fā)表于 2025-3-27 20:50:48 | 只看該作者
37#
發(fā)表于 2025-3-28 01:41:00 | 只看該作者
38#
發(fā)表于 2025-3-28 03:19:50 | 只看該作者
Asymptotic Behaviour of Energy Integrals for Small Perturbations of the Boundary Near Corners and Iss in smoothing of the boundary in a neighborhood of the singularity, and in the second case the isolated point is transformed into a small hole. Our aim is to derive and to justify mathematically asymptotic formulas for energy functionals applied to boundary value problems for systems which are elliptic in the sense of Douglis-Nirenberg.
39#
發(fā)表于 2025-3-28 08:25:26 | 只看該作者
40#
發(fā)表于 2025-3-28 11:02:56 | 只看該作者
Homogeneous Solutions of Boundary Value Problems in the Exterior of a Thin Coneonsider eigenvalues of polynomial operator pencils from the same point of view. Such problems arise in a natural way when we investigate singularities of solutions of boundary value problems in domains with conic points.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-26 22:59
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
五常市| 南雄市| 伊金霍洛旗| 哈巴河县| 青田县| 青冈县| 青海省| 富源县| 兴安县| 泸定县| 双城市| 高陵县| 扶风县| 凤台县| 琼结县| 栖霞市| 慈利县| 高邑县| 鹤壁市| 若羌县| 如皋市| 金溪县| 南溪县| 锡林浩特市| 马龙县| 开江县| 册亨县| 深泽县| 翁牛特旗| 莱阳市| 周宁县| 宿松县| 依安县| 正镶白旗| 武宣县| 皋兰县| 海兴县| 涿州市| 双鸭山市| 西华县| 惠州市|