找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Asymptotic Theory of Elliptic Boundary Value Problems in Singularly Perturbed Domains; Volume I Vladimir Maz’ya,Serguei Nazarov,Boris A. Pl

[復(fù)制鏈接]
樓主: monster
31#
發(fā)表于 2025-3-27 00:18:38 | 只看該作者
32#
發(fā)表于 2025-3-27 02:42:10 | 只看該作者
On the Expressiveness and Complexity of ,onsider eigenvalues of polynomial operator pencils from the same point of view. Such problems arise in a natural way when we investigate singularities of solutions of boundary value problems in domains with conic points.
33#
發(fā)表于 2025-3-27 06:54:53 | 只看該作者
https://doi.org/10.1007/978-3-0348-8434-1Boundary value problem; Eigenvalue; Laplace operator; Partial differential equations; differential equat
34#
發(fā)表于 2025-3-27 10:08:36 | 只看該作者
978-3-0348-9565-1Birkh?user Verlag 2000
35#
發(fā)表于 2025-3-27 15:06:16 | 只看該作者
36#
發(fā)表于 2025-3-27 20:50:48 | 只看該作者
37#
發(fā)表于 2025-3-28 01:41:00 | 只看該作者
38#
發(fā)表于 2025-3-28 03:19:50 | 只看該作者
Asymptotic Behaviour of Energy Integrals for Small Perturbations of the Boundary Near Corners and Iss in smoothing of the boundary in a neighborhood of the singularity, and in the second case the isolated point is transformed into a small hole. Our aim is to derive and to justify mathematically asymptotic formulas for energy functionals applied to boundary value problems for systems which are elliptic in the sense of Douglis-Nirenberg.
39#
發(fā)表于 2025-3-28 08:25:26 | 只看該作者
40#
發(fā)表于 2025-3-28 11:02:56 | 只看該作者
Homogeneous Solutions of Boundary Value Problems in the Exterior of a Thin Coneonsider eigenvalues of polynomial operator pencils from the same point of view. Such problems arise in a natural way when we investigate singularities of solutions of boundary value problems in domains with conic points.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-19 08:25
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
田东县| 贵阳市| 盘锦市| 淳安县| 罗定市| 定远县| 阳曲县| 儋州市| 浦城县| 珠海市| 湖州市| 山丹县| 军事| 富民县| 新安县| 扎赉特旗| 和平区| 株洲市| 贺兰县| 莱西市| 陇西县| 灵璧县| 雅安市| 邯郸市| 项城市| 伊宁市| 永清县| 长丰县| 新津县| 凉山| 汾阳市| 光泽县| 平顶山市| 共和县| 辽中县| 丁青县| 米脂县| 探索| 伊通| 嘉义市| 繁峙县|