找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Asymptotic Methods in Fluid Mechanics: Survey and Recent Advances; Herbert Steinrück Book 2010 CISM Udine 2010 Exponential asymptotics.Flu

[復(fù)制鏈接]
樓主: 底的根除
21#
發(fā)表于 2025-3-25 07:15:32 | 只看該作者
22#
發(fā)表于 2025-3-25 09:28:21 | 只看該作者
Asymptotic Methods in Fluid Mechanics: Survey and Recent Advances978-3-7091-0408-8Series ISSN 0254-1971 Series E-ISSN 2309-3706
23#
發(fā)表于 2025-3-25 14:29:28 | 只看該作者
https://doi.org/10.1007/978-0-387-68407-9d PDE problems. It has been successfully used in a wide variety of applications (cf. Kevorkian and Cole (1993), Lagerstrom (1988), Dyke (1975)). However, there are certain special classes of problems where this method has some apparent limitations.
24#
發(fā)表于 2025-3-25 17:02:34 | 只看該作者
25#
發(fā)表于 2025-3-25 22:49:45 | 只看該作者
26#
發(fā)表于 2025-3-26 03:08:11 | 只看該作者
27#
發(fā)表于 2025-3-26 08:11:53 | 只看該作者
Exponential Asymptotics and Generalized Solitary Waves,e waves have a central core of finite amplitude, but are accompanied by co-propagating oscillatory tails whose amplitude is exponentially small. Special interest lies in the possibility that for certain parameter values, the amplitude of the oscillatory tails may be zero, leading to the important concept of embedded solitary waves.
28#
發(fā)表于 2025-3-26 11:49:41 | 只看該作者
29#
發(fā)表于 2025-3-26 13:51:56 | 只看該作者
0254-1971 Reynolds number flows (interacting boundary layers, marginal separation, turbulence asymptotics) and low Reynolds number flows as an example of hybrid methods, waves as an example of exponential asymptotics and multiple scales methods in meteorology.978-3-7091-1690-6978-3-7091-0408-8Series ISSN 0254-1971 Series E-ISSN 2309-3706
30#
發(fā)表于 2025-3-26 18:51:42 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-23 15:51
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
横山县| 綦江县| 千阳县| 伊川县| 深水埗区| 洛扎县| 吐鲁番市| 梁河县| 新安县| 叶城县| 留坝县| 滨州市| 涞源县| 肥西县| 丹寨县| 灵台县| 茌平县| 沁水县| 商南县| 峨眉山市| 余干县| 彩票| 南漳县| 台湾省| 丹阳市| 瓮安县| 庆阳市| 盘山县| 望谟县| 克什克腾旗| 临潭县| 隆林| 温州市| 永城市| 永昌县| 曲阳县| 承德县| 庄浪县| 和静县| 陇川县| 天全县|