找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Asymptotic Integration of Differential and Difference Equations; Sigrun Bodine,Donald A. Lutz Book 2015 Springer International Publishing

[復(fù)制鏈接]
樓主: retort
31#
發(fā)表于 2025-3-26 22:08:40 | 只看該作者
Perturbations of Jordan Difference Systems,In this brief chapter, we only consider perturbations of systems of difference equations with a single non-singular Jordan block. That is, we consider . Following the approach taken in Sect.?., the next theorem can be considered as a discrete counterpart of Corollary?., and its proof is parallel to the proof given in Theorem?..
32#
發(fā)表于 2025-3-27 04:15:47 | 只看該作者
Applications to Classes of Scalar Linear Differential Equations,In this chapter we consider various classes of .th-order (.?≥?2) linear homogeneous equations .
33#
發(fā)表于 2025-3-27 06:35:53 | 只看該作者
Applications to Classes of Scalar Linear Difference Equations,In this chapter we are interested in scalar .th-order linear difference equations (also called linear recurrence relations) of the form .
34#
發(fā)表于 2025-3-27 11:05:33 | 只看該作者
35#
發(fā)表于 2025-3-27 14:46:28 | 只看該作者
36#
發(fā)表于 2025-3-27 20:10:20 | 只看該作者
37#
發(fā)表于 2025-3-28 00:51:59 | 只看該作者
Foundations of Micropolar Thermoelasticityor the (unperturbed) system .′?=?.(.)., how “small” should the perturbation .(.) be so that we can determine an asymptotic behavior for solutions of (2.1)? This question is intentionally vague because depending upon the particular circumstances, there are many possible answers.
38#
發(fā)表于 2025-3-28 04:40:09 | 只看該作者
https://doi.org/10.1007/978-1-4302-0392-6e them are closely related. So it is natural to ask for a framework which would encompass both sets of results as well as including some generalizations. One possibility for doing this has been discussed by Spigler and Vianello [143].
39#
發(fā)表于 2025-3-28 09:25:35 | 只看該作者
40#
發(fā)表于 2025-3-28 12:23:31 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 03:47
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
武威市| 开原市| 集安市| 瓦房店市| 泰州市| 郓城县| 镇江市| 宁武县| 房产| 肃北| 宜昌市| 偃师市| 烟台市| 博白县| 黑山县| 朝阳市| 泸水县| 米脂县| 英山县| 奉化市| SHOW| 文昌市| 赣州市| 淮北市| 深水埗区| 罗甸县| 上饶县| 吐鲁番市| 大姚县| 东山县| 松桃| 安阳县| 津南区| 金塔县| 平度市| 滨海县| 洞口县| 会理县| 卢湾区| 南雄市| 卓尼县|