找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Asymptotic Expansion of a Partition Function Related to the Sinh-model; Ga?tan Borot,Alice Guionnet,Karol K. Kozlowski Book 2016 Springer

[復(fù)制鏈接]
查看: 52125|回復(fù): 36
樓主
發(fā)表于 2025-3-21 18:00:49 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱Asymptotic Expansion of a Partition Function Related to the Sinh-model
影響因子2023Ga?tan Borot,Alice Guionnet,Karol K. Kozlowski
視頻videohttp://file.papertrans.cn/164/163800/163800.mp4
發(fā)行地址Combines tools from potential theory, large deviations, Schwinger-Dyson equations, and Riemann-Hilbert techniques, and presents them in the same framework.Derives all concepts and results from scratch
學(xué)科分類Mathematical Physics Studies
圖書封面Titlebook: Asymptotic Expansion of a Partition Function Related to the Sinh-model;  Ga?tan Borot,Alice Guionnet,Karol K. Kozlowski Book 2016 Springer
影響因子This book elaborates on the asymptotic behaviour, when N is large, of certain N-dimensional integrals which typically occur in random matrices, or in 1+1 dimensional quantum integrable models solvable by the quantum separation of variables. The introduction presents the underpinning motivations for this problem, a historical overview, and a summary of the strategy, which is applicable in greater generality. The core aims at proving an expansion up to o(1) for the logarithm of the partition function of the sinh-model. This is achieved by a combination of potential theory and large deviation theory so as to grasp the leading asymptotics described by an equilibrium measure, the Riemann-Hilbert approach to truncated Wiener-Hopf in order to analyse the equilibrium measure, the Schwinger-Dyson equations and the boostrap method to finally obtain an expansion of correlation functions and the one of the partition function. This book is addressed to researchers working in random matrices, statistical physics or integrable systems, or interested in recent developments of asymptotic analysis in those fields..
Pindex Book 2016
The information of publication is updating

書目名稱Asymptotic Expansion of a Partition Function Related to the Sinh-model影響因子(影響力)




書目名稱Asymptotic Expansion of a Partition Function Related to the Sinh-model影響因子(影響力)學(xué)科排名




書目名稱Asymptotic Expansion of a Partition Function Related to the Sinh-model網(wǎng)絡(luò)公開度




書目名稱Asymptotic Expansion of a Partition Function Related to the Sinh-model網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Asymptotic Expansion of a Partition Function Related to the Sinh-model被引頻次




書目名稱Asymptotic Expansion of a Partition Function Related to the Sinh-model被引頻次學(xué)科排名




書目名稱Asymptotic Expansion of a Partition Function Related to the Sinh-model年度引用




書目名稱Asymptotic Expansion of a Partition Function Related to the Sinh-model年度引用學(xué)科排名




書目名稱Asymptotic Expansion of a Partition Function Related to the Sinh-model讀者反饋




書目名稱Asymptotic Expansion of a Partition Function Related to the Sinh-model讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:27:02 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:24:40 | 只看該作者
,The Riemann–Hilbert Approach to the Inversion of ,, we introduce the singular integral operator ..This operator is a regularisation of the operator . in the sense that, formally, .. This regularisation enables to set a well defined associated Riemann–Hilbert problem, and is such that, once all calculations have been done and the inverse of . constru
地板
發(fā)表于 2025-3-22 05:36:03 | 只看該作者
5#
發(fā)表于 2025-3-22 09:34:25 | 只看該作者
6#
發(fā)表于 2025-3-22 13:32:56 | 只看該作者
0921-3767 same framework.Derives all concepts and results from scratchThis book elaborates on the asymptotic behaviour, when N is large, of certain N-dimensional integrals which typically occur in random matrices, or in 1+1 dimensional quantum integrable models solvable by the quantum separation of variables.
7#
發(fā)表于 2025-3-22 18:14:20 | 只看該作者
8#
發(fā)表于 2025-3-23 00:23:02 | 只看該作者
9#
發(fā)表于 2025-3-23 04:19:08 | 只看該作者
10#
發(fā)表于 2025-3-23 06:00:26 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-25 00:40
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
英超| 麻城市| 瑞昌市| 红桥区| 无极县| 曲水县| 内乡县| 伊春市| 合作市| 扬州市| 平阳县| 沾益县| 晋江市| 大田县| 南部县| 翼城县| 玛沁县| 甘南县| 瑞丽市| 连云港市| 特克斯县| 盈江县| 交口县| 邵阳市| 汽车| 五河县| 中山市| 克山县| 连城县| 厦门市| 禹城市| 孟连| 齐河县| 本溪市| 临朐县| 石门县| 哈密市| 西宁市| 西乡县| 门源| 达日县|