找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Associative and Non-Associative Algebras and Applications; 3rd MAMAA, Chefchaou Mercedes Siles Molina,Laiachi El Kaoutit,Mohamed B Conferen

[復(fù)制鏈接]
樓主: Deflated
41#
發(fā)表于 2025-3-28 18:09:39 | 只看該作者
42#
發(fā)表于 2025-3-28 19:26:59 | 只看該作者
43#
發(fā)表于 2025-3-29 01:11:25 | 只看該作者
Semi-ring Based Gr?bner–Shirshov Bases over a Noetherian Valuation Ringing rather in a monoid. In this paper, we study Gr?bner–Shirshov bases where the monomials are in a semi-ring and the coefficients are in a noetherian valuation ring and we establish the relation between weak and strong Gr?bner bases.
44#
發(fā)表于 2025-3-29 06:49:36 | 只看該作者
Conference proceedings 2020ouen, Morocco, April 12-14, 2018, and which reflects the mathematical collaboration between south European and north African countries, mainly France, Spain, Morocco, Tunisia and Senegal. The book is divided in three parts and features contributions from the following fields: algebraic and analytic
45#
發(fā)表于 2025-3-29 08:06:04 | 只看該作者
46#
發(fā)表于 2025-3-29 14:29:18 | 只看該作者
https://doi.org/10.1007/978-1-4757-3184-2 the automorphisms having the property of extension, in the category of abelian groups. Let . be an integral bounded factorization domain and . a direct sum of cyclic torsion-free modules over .. This work aims to prove that the automorphisms of . that satisfy the property of the extension are none other than the homotheties of invertible ratio.
47#
發(fā)表于 2025-3-29 16:44:38 | 只看該作者
The Extension Property in the Category of Direct Sum of Cyclic Torsion-Free Modules over a BFD the automorphisms having the property of extension, in the category of abelian groups. Let . be an integral bounded factorization domain and . a direct sum of cyclic torsion-free modules over .. This work aims to prove that the automorphisms of . that satisfy the property of the extension are none other than the homotheties of invertible ratio.
48#
發(fā)表于 2025-3-29 21:19:19 | 只看該作者
49#
發(fā)表于 2025-3-30 00:39:52 | 只看該作者
50#
發(fā)表于 2025-3-30 05:45:16 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-24 06:25
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
平谷区| 西贡区| 鸡东县| 辽宁省| 廊坊市| 漯河市| 陈巴尔虎旗| 府谷县| 遂川县| 工布江达县| 饶河县| 涞源县| 祁阳县| 晋宁县| 长岭县| 东港市| 甘德县| 自治县| 体育| 民权县| 江安县| 山阳县| 涟水县| 沿河| 社旗县| 桓台县| 马山县| 稷山县| 黔西| 当阳市| 张家界市| 偃师市| 师宗县| 宽城| 韩城市| 平安县| 房产| 石狮市| 安义县| 顺平县| 河津市|