找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Associative Digital Network Theory; An Associative Algeb Nico F. Benschop Book Apr 2009Latest edition Springer Science+Business Media B.V.

[復(fù)制鏈接]
樓主: FARCE
41#
發(fā)表于 2025-3-28 17:00:32 | 只看該作者
https://doi.org/10.1007/3-540-36135-9idues mod .. with ‘carry’ .<.. of weight .. yields a Euclidean prime sieve for integers. Failure of Goldbach’s Conjecture?(.) for some 2. contradicts .(.) for some?., yielding?.: Each 2.>4 is the sum of two odd primes.
42#
發(fā)表于 2025-3-28 21:53:29 | 只看該作者
43#
發(fā)表于 2025-3-29 01:07:06 | 只看該作者
Simple Semigroups and the Five Basic Machines,ch input and input-sequence maps the state set onto the same number of next states. CR-machines are analysed by their sequential closure (semigroup), which is shown to be a ., that is: a semi-direct product .?|>(.×.) of a left- and a right-copy semigroup, and a group. So in general a CR-machine is a
44#
發(fā)表于 2025-3-29 06:18:20 | 只看該作者
45#
發(fā)表于 2025-3-29 10:46:27 | 只看該作者
46#
發(fā)表于 2025-3-29 13:06:34 | 只看該作者
47#
發(fā)表于 2025-3-29 19:25:59 | 只看該作者
48#
發(fā)表于 2025-3-29 21:47:19 | 只看該作者
,Fermat’s Small Theorem Extended to?,,mod?,,,. are shown to have distinct .. mod .., and divisors . of .?1 (resp. .+1) with different primesets have distinct .. mod ... Moreover 2.?2 ?mod .. for prime?., related to . primes (Wieferich in J. Reine Angew. Math. 136:293–302, .) and . case. for integers (Chap.?8). .: Some .|.±1 is semi primitive r
49#
發(fā)表于 2025-3-30 02:16:54 | 只看該作者
50#
發(fā)表于 2025-3-30 05:32:32 | 只看該作者
,Additive Structure of ,(.) mod ,, (Squarefree) and Goldbach’s Conjecture, All primes between .. and .. are in the group .. of units in semigroup?. of multiplication mod?... Due to its squarefree modulus . is a disjoint union of 2. groups, with as many idempotents—one per divisor of?.., which form a Boolean lattice .. The . properties of . and its lattice are studied. It
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-22 23:41
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
于都县| 渭南市| 淄博市| 同德县| 大埔县| 太白县| 永和县| 洛川县| 丹凤县| 将乐县| 泰和县| 镇坪县| 克什克腾旗| 巴东县| 元朗区| 宁化县| 崇义县| 三门峡市| 绥滨县| 茶陵县| 彝良县| 平遥县| 平阴县| 饶平县| 南郑县| 玉环县| 辉县市| 梁平县| 灌阳县| 兴安县| 方城县| 建昌县| 鸡东县| 阿鲁科尔沁旗| 玉门市| 怀安县| 灵璧县| 弥渡县| 梁河县| 鹤庆县| 古丈县|