找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Associahedra, Tamari Lattices and Related Structures; Tamari Memorial Fest Folkert Müller-Hoissen,Jean Marcel Pallo,Jim Stash Book 2012 Spr

[復(fù)制鏈接]
樓主: SORB
11#
發(fā)表于 2025-3-23 10:58:44 | 只看該作者
12#
發(fā)表于 2025-3-23 16:18:14 | 只看該作者
Book 2012on to topical research related to Tamari‘s work and ideas. Most of the articles collected in it are written in a way accessible to a wide audience of students and researchers in mathematics and mathematical physics and are accompanied by high quality illustrations. .
13#
發(fā)表于 2025-3-23 20:06:51 | 只看該作者
Formal Models of Communicating Systems 312-avoiding permutations, by recovering the proof of the fact that they are isomorphic to the Tamari and the Dyck order, respectively; our proof, which simplifies the existing ones, relies on our results on series parallel interval orders.
14#
發(fā)表于 2025-3-24 01:19:16 | 只看該作者
15#
發(fā)表于 2025-3-24 04:15:12 | 只看該作者
Progress in Mathematicshttp://image.papertrans.cn/b/image/163496.jpg
16#
發(fā)表于 2025-3-24 07:22:47 | 只看該作者
17#
發(fā)表于 2025-3-24 11:38:28 | 只看該作者
Formal Models in the Study of Languageupoid and the Gensemer/Weinert equidivisible partial groupoid, provided they satisfy an additional axiom, weak associativity. Both structures share the one mountain property. More embedding results for partial groupoids into other types of algebraic structures are presented as well.
18#
發(fā)表于 2025-3-24 15:31:38 | 只看該作者
A Feature-Based Account of Weak Islandsce of such associativity. We consider a natural generalization by considering the moduli space of marked particles on the Poincaré disk, extending Tamari’s notion of associativity based on nesting. A geometric and combinatorial construction of this space is provided, which appears in Kontsevich’s de
19#
發(fā)表于 2025-3-24 21:16:19 | 只看該作者
20#
發(fā)表于 2025-3-25 01:47:17 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 05:22
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
石泉县| 永胜县| 靖安县| 延庆县| 中超| 琼海市| 竹山县| 日照市| 英超| 太仆寺旗| 安吉县| 达日县| 余江县| 三原县| 东台市| 高密市| 澄迈县| 万宁市| 遂平县| 凌云县| 合阳县| 玛多县| 久治县| 从江县| 通渭县| 张家口市| 泰宁县| 华安县| 鄂尔多斯市| 波密县| 沙田区| 合阳县| 津市市| 噶尔县| 炉霍县| 江津市| 乐业县| 靖西县| 灌南县| 清苑县| 敦煌市|