找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Neural Networks and Neural Information Processing — ICANN/ICONIP 2003; Joint International Okyay Kaynak,Ethem Alpaydin,Lei Xu C

[復(fù)制鏈接]
樓主: Callow
31#
發(fā)表于 2025-3-27 00:43:42 | 只看該作者
32#
發(fā)表于 2025-3-27 04:04:03 | 只看該作者
https://doi.org/10.1007/978-3-658-37586-7learning rule from a probabilistic optimality criterion. Our approach allows us to obtain quantitative results in terms of a learning window. This is done by maximising a given likelihood function with respect to the synaptic weights. The resulting weight adaptation is compared with experimental results.
33#
發(fā)表于 2025-3-27 08:22:48 | 只看該作者
Rafaela Sales Goulart,Fabiana Lopes da Cunharrelatedness between the independent components prevents them from converging to the same optimum. A simple and popular way of achieving decorrelation between recovered independent components is a deflation scheme based on a Gram-Schmidt-like decorrelation
34#
發(fā)表于 2025-3-27 09:53:13 | 只看該作者
Optimal Hebbian Learning: A Probabilistic Point of Viewlearning rule from a probabilistic optimality criterion. Our approach allows us to obtain quantitative results in terms of a learning window. This is done by maximising a given likelihood function with respect to the synaptic weights. The resulting weight adaptation is compared with experimental results.
35#
發(fā)表于 2025-3-27 16:19:20 | 只看該作者
36#
發(fā)表于 2025-3-27 21:25:13 | 只看該作者
Adaptive Hopfield Networktion mechanism” to guide the neural search process towards high-quality solutions for large-scale static optimization problems. Specifically, a novel methodology that employs gradient-descent in the error space to adapt weights and constraint weight parameters in order to guide the network dynamics
37#
發(fā)表于 2025-3-27 22:18:55 | 只看該作者
Effective Pruning Method for a Multiple Classifier System Based on Self-Generating Neural Networksrks (SGNN) are one of the suitable base-classifiers for MCS because of their simple setting and fast learning. However, the computational cost of the MCS increases in proportion to the number of SGNN. In this paper, we propose a novel pruning method for the structure of the SGNN in the MCS. Experime
38#
發(fā)表于 2025-3-28 04:21:19 | 只看該作者
Structural Bias in Inducing Representations for Probabilistic Natural Language Parsingries, which are used to estimate probabilities for parser decisions. This induction process is given domain-specific biases by matching the flow of information in the network to structural locality in the parse tree, without imposing any independence assumptions. The parser achieves performance on t
39#
發(fā)表于 2025-3-28 07:29:03 | 只看該作者
Independent Component Analysis Minimizing Convex Divergencethis information measure is minimized to derive new ICA algorithms. Since the convex divergence includes logarithmic information measures as special cases, the presented method comprises faster algorithms than existing logarithmic ones. Another important feature of this paper’s ICA algorithm is to a
40#
發(fā)表于 2025-3-28 14:18:43 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-23 23:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
和林格尔县| 西乡县| 富源县| 平利县| 香港| 肇庆市| 保德县| 肃宁县| 兖州市| 安岳县| 罗定市| 永州市| 保山市| 察哈| 互助| 湘西| 漾濞| 织金县| 石狮市| 奉节县| 安徽省| 四平市| 平安县| 调兵山市| 昌图县| 清原| 长治县| 九龙城区| 柞水县| 双城市| 抚松县| 广西| 托克托县| 陵川县| 逊克县| 吐鲁番市| 邛崃市| 张掖市| 新竹县| 剑阁县| 分宜县|