找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Neural Networks and Machine Learning – ICANN 2023; 32nd International C Lazaros Iliadis,Antonios Papaleonidas,Chrisina Jay Confe

[復(fù)制鏈接]
樓主: 相似
21#
發(fā)表于 2025-3-25 05:52:30 | 只看該作者
,Exploring the?Role of?Recursive Convolutional Layer in?Generative Adversarial Networks,ualitatively and quantitatively. Preliminary experiments suggest that the use of recursive layers holds significant potential to generate higher-quality samples in GANs. The code is publicly available at ..
22#
發(fā)表于 2025-3-25 10:14:18 | 只看該作者
23#
發(fā)表于 2025-3-25 13:07:16 | 只看該作者
24#
發(fā)表于 2025-3-25 19:08:18 | 只看該作者
25#
發(fā)表于 2025-3-25 20:25:22 | 只看該作者
,Low-Frequency Features Optimization for?Transferability Enhancement in?Radar Target Adversarial Attl examples focus on the low-frequency features of attacked targets, which are more generalized. The adversarial examples are guided to attack the high-level semantic features of the target, and the transferability of adversarial examples is improved. Experimental results on moving and stationary tar
26#
發(fā)表于 2025-3-26 03:01:36 | 只看該作者
Multi-convolution and Adaptive-Stride Based Transferable Adversarial Attacks,aptive-stride module adjusts the stride adaptively to control the change range of the stride. Experimental results have shown that MCAN-FGM has a higher?attack success rate?than state-of-the-art gradient-based attack methods.
27#
發(fā)表于 2025-3-26 05:39:46 | 只看該作者
,Multi-source Open-Set Image Classification Based on?Deep Adversarial Domain Adaptation,ture space. Furthermore, to address the inadequate handling of unknown classes in existing methods, we further partition the unknown class samples in the target domain. The proposed model is evaluated on three datasets, and consistently outperforms baseline methods and benchmark single-source open-s
28#
發(fā)表于 2025-3-26 08:49:32 | 只看該作者
29#
發(fā)表于 2025-3-26 13:42:48 | 只看該作者
,Towards Robustness of?Large Language Models on?Text-to-SQL Task: An Adversarial and?Cross-Domain Inro-shot text-to-SQL parsers, their performances degrade under adversarial and domain generalization perturbations, with varying degrees of robustness depending on the type and level of perturbations applied. We also explore the impact of usage-related factors such as prompt design on the performance
30#
發(fā)表于 2025-3-26 19:29:48 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-11-1 14:19
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
曲沃县| 新和县| 仙居县| 三原县| 禄劝| 吉木萨尔县| 九江市| 淮北市| 漳平市| 彰武县| 衡水市| 桦甸市| 尖扎县| 邵东县| 郎溪县| 阜平县| 永平县| 甘南县| 合阳县| 公主岭市| 新和县| 衡水市| 溧水县| 柞水县| 五大连池市| 平利县| 枣强县| 太仓市| 柘荣县| 洱源县| 潼南县| 隆化县| 延川县| 当阳市| 稷山县| 安阳市| 柞水县| 佛坪县| 三门峡市| 池州市| 兰州市|