找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Neural Networks and Machine Learning – ICANN 2023; 32nd International C Lazaros Iliadis,Antonios Papaleonidas,Chrisina Jay Confe

[復(fù)制鏈接]
查看: 51106|回復(fù): 64
樓主
發(fā)表于 2025-3-21 18:17:12 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱Artificial Neural Networks and Machine Learning – ICANN 2023
期刊簡稱32nd International C
影響因子2023Lazaros Iliadis,Antonios Papaleonidas,Chrisina Jay
視頻videohttp://file.papertrans.cn/163/162665/162665.mp4
學(xué)科分類Lecture Notes in Computer Science
圖書封面Titlebook: Artificial Neural Networks and Machine Learning – ICANN 2023; 32nd International C Lazaros Iliadis,Antonios Papaleonidas,Chrisina Jay Confe
影響因子.The 10-volume set LNCS 14254-14263 constitutes the proceedings of the 32nd International Conference on Artificial Neural Networks and Machine Learning, ICANN 2023, which took place in Heraklion, Crete, Greece, during September 26–29, 2023..The 426 full papers, 9 short papers and 9 abstract papers included in these proceedings were carefully reviewed and selected from 947 submissions. ICANN is a dual-track conference, featuring tracks in brain inspired computing on the one hand, and machine learning on the other, with strong cross-disciplinary interactions and applications.??.
Pindex Conference proceedings 2023
The information of publication is updating

書目名稱Artificial Neural Networks and Machine Learning – ICANN 2023影響因子(影響力)




書目名稱Artificial Neural Networks and Machine Learning – ICANN 2023影響因子(影響力)學(xué)科排名




書目名稱Artificial Neural Networks and Machine Learning – ICANN 2023網(wǎng)絡(luò)公開度




書目名稱Artificial Neural Networks and Machine Learning – ICANN 2023網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Artificial Neural Networks and Machine Learning – ICANN 2023被引頻次




書目名稱Artificial Neural Networks and Machine Learning – ICANN 2023被引頻次學(xué)科排名




書目名稱Artificial Neural Networks and Machine Learning – ICANN 2023年度引用




書目名稱Artificial Neural Networks and Machine Learning – ICANN 2023年度引用學(xué)科排名




書目名稱Artificial Neural Networks and Machine Learning – ICANN 2023讀者反饋




書目名稱Artificial Neural Networks and Machine Learning – ICANN 2023讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:08:01 | 只看該作者
板凳
發(fā)表于 2025-3-22 04:20:49 | 只看該作者
Zug-, Druck- und Scherfestigkeit,erformed person identification tasks using ten sub-datasets sampled from a large-scale CBP dataset. Our proposed method achieved higher recognition accuracy than other relevant methods in spite of its relatively low computational cost on segment-by-segment and aggregated recognition tasks, respectively.
地板
發(fā)表于 2025-3-22 08:38:14 | 只看該作者
5#
發(fā)表于 2025-3-22 09:39:48 | 只看該作者
,An Echo State Network-Based Method for?Identity Recognition with?Continuous Blood Pressure Data,erformed person identification tasks using ten sub-datasets sampled from a large-scale CBP dataset. Our proposed method achieved higher recognition accuracy than other relevant methods in spite of its relatively low computational cost on segment-by-segment and aggregated recognition tasks, respectively.
6#
發(fā)表于 2025-3-22 14:58:26 | 只看該作者
7#
發(fā)表于 2025-3-22 20:16:33 | 只看該作者
8#
發(fā)表于 2025-3-22 23:34:32 | 只看該作者
9#
發(fā)表于 2025-3-23 02:20:46 | 只看該作者
https://doi.org/10.1007/978-3-662-11735-4olecular Structure-based Double-Central Drug-Drug Interaction prediction(MSDC-DDI). MSDC-DDI utilizes a double-central encoder and a cross-dependent schema to generate the representations of the drugs. MSDC-DDI made effective and accurate predictions, which achieved up to more than 99% in DDI prediction.
10#
發(fā)表于 2025-3-23 07:02:27 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-17 09:15
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
高陵县| 克山县| 安康市| 含山县| 禄丰县| 周至县| 阳曲县| 云和县| 思南县| 嫩江县| 民和| 东安县| 彭山县| 渭源县| 南安市| 江达县| 英超| 博罗县| 永修县| 霍山县| 轮台县| 泗阳县| 龙山县| 韩城市| 昌邑市| 乃东县| 渭南市| 灵宝市| 彭阳县| 平阴县| 申扎县| 马公市| 平远县| 泸水县| 琼海市| 德清县| 洛浦县| 洮南市| 田林县| 阿拉善右旗| 上饶县|