找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Neural Networks and Machine Learning – ICANN 2023; 32nd International C Lazaros Iliadis,Antonios Papaleonidas,Chrisina Jay Confe

[復(fù)制鏈接]
樓主: Hayes
41#
發(fā)表于 2025-3-28 14:59:25 | 只看該作者
https://doi.org/10.1007/978-3-662-40224-5ce, they tend to focus on specific artifacts and lead to overfitting. Erasing-based augmentations can alleviate this issue, but they still suffer from high randomness and fixed shapes. Therefore, we propose a novel face masking method named Landmarks Based Erasing (LBE), which exploits the geometric
42#
發(fā)表于 2025-3-28 19:57:20 | 只看該作者
https://doi.org/10.1007/978-3-662-40224-5toring, and other fields. To obtain clear and haze free images, the paper proposes a dehazing network based on serial feature attention. The network adaptively captures the inter-dependency between features from channel and spatial perspectives, respectively, learns the weights of features, and uses
43#
發(fā)表于 2025-3-29 00:46:01 | 只看該作者
44#
發(fā)表于 2025-3-29 06:10:46 | 只看該作者
45#
發(fā)表于 2025-3-29 07:28:44 | 只看該作者
https://doi.org/10.1007/978-3-662-38004-8increased. The development of efficient no-reference video quality assessment (NR-VQA) models for UGC with these features is a challenging task. Although previous studies have proposed solutions that combine multi-scale spatial and multi-rate motion information, existing NR-VQA models simply connect
46#
發(fā)表于 2025-3-29 11:58:40 | 只看該作者
47#
發(fā)表于 2025-3-29 16:12:49 | 只看該作者
Zug-, Druck- und Scherfestigkeit, main difficulties in feature learning has been the problem of posterior collapse in variational inference. This paper proposes a hierarchical aggregated vector-quantized variational autoencoder, called TransVQ-VAE. Firstly, the multi-scale feature information based on the hierarchical Transformer i
48#
發(fā)表于 2025-3-29 23:06:47 | 只看該作者
49#
發(fā)表于 2025-3-30 02:21:27 | 只看該作者
Zug-, Druck- und Scherfestigkeit,ity to downstream tasks. Therefore, this article proposes an unsupervised shape enhancement and decomposition machine network for 3D facial reconstruction. Specifically, we design a shape enhancement network, further combining global and local features, which can restore more complete and realistic
50#
發(fā)表于 2025-3-30 04:23:12 | 只看該作者
Zug-, Druck- und Scherfestigkeit,crepancy. Existing methods mainly focus on bridging the relation between modalities by shared representation learning in the common embedding space. However, due to the outliers, these methods often struggle to build compact clustering subspaces. Besides, these methods also suffer from modality imba
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 19:14
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
佛山市| 湘潭县| 博乐市| 桃园县| 肃南| 永平县| 四子王旗| 龙海市| 嵩明县| 彩票| 晋宁县| 安徽省| 昌黎县| 江孜县| 山东省| 利辛县| 海原县| 兖州市| 西青区| 昭苏县| 遂昌县| 长兴县| 新乐市| 化州市| 宣武区| 柘城县| 西安市| 乾安县| 平昌县| 临西县| 资溪县| 巨鹿县| 布尔津县| 南安市| 慈利县| 昌都县| 金坛市| 沈丘县| 岗巴县| 波密县| 大化|