找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Neural Networks and Machine Learning – ICANN 2023; 32nd International C Lazaros Iliadis,Antonios Papaleonidas,Chrisina Jay Confe

[復(fù)制鏈接]
樓主: chondrocyte
51#
發(fā)表于 2025-3-30 11:12:19 | 只看該作者
Artificial Neural Networks and Machine Learning – ICANN 2023978-3-031-44210-0Series ISSN 0302-9743 Series E-ISSN 1611-3349
52#
發(fā)表于 2025-3-30 14:45:40 | 只看該作者
53#
發(fā)表于 2025-3-30 17:35:21 | 只看該作者
54#
發(fā)表于 2025-3-30 22:31:15 | 只看該作者
,A Lightweight Multi-Scale Large Kernel Attention Hierarchical Network for?Single Image Deraining,. To address this issue, we propose a lightweight multi-scale large kernel attention hierarchical network(LMANet). Our approach combines multi-scale and Large Kernel Attention(LKA) to create Multi-Scale Large Kernel Attention (MSLKA), where large kernel decomposition can effectively decouple large k
55#
發(fā)表于 2025-3-31 02:37:13 | 只看該作者
A Multi-scale Method for Cell Segmentation in Fluorescence Microscopy Images, expression and the study of cell function. Existing cell segmentation methods have drawbacks in terms of inaccurate location of segmentation boundary, misidentification, and inaccurate segmentation of overlapping cells. To address these issues, a novel . (MMCS) is proposed in this paper. Our motiva
56#
發(fā)表于 2025-3-31 08:51:45 | 只看該作者
57#
發(fā)表于 2025-3-31 11:07:52 | 只看該作者
58#
發(fā)表于 2025-3-31 16:57:27 | 只看該作者
,An Improved Lightweight YOLOv5 for?Remote Sensing Images,s, remains challenging due to the substantial computational demands of existing object detection models. In this paper, we propose an improved remote sensing image small object detection method based on YOLOv5. In order to preserve high-resolution features, we remove the Focus module from the YOLOv5
59#
發(fā)表于 2025-3-31 18:42:24 | 只看該作者
An Improved YOLOv5 with Structural Reparameterization for Surface Defect Detection,g methods for detecting surface defects cannot meet the requirements in terms of speed and accuracy. Based on structural re-parameterization, coordinate attention (CA) mechanism, and an additional detection head, we propose an improved YOLOv5 model for detecting surface defects of steel plates. Firs
60#
發(fā)表于 2025-4-1 00:46:11 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-21 10:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
彭阳县| 宜都市| 嘉黎县| 兰西县| 即墨市| 宿松县| 尚志市| 邮箱| 潞城市| 芦山县| 姚安县| 盘锦市| 廊坊市| 荃湾区| 大庆市| 哈尔滨市| 望城县| 桦川县| 分宜县| 滦平县| 宜宾县| 墨江| 顺平县| 泗阳县| 新津县| 松原市| 恭城| 遂平县| 永善县| 沙河市| 达尔| 科技| 岳池县| 曲周县| 孙吴县| 大厂| 永丰县| 漾濞| 和林格尔县| 枝江市| 望江县|