找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Neural Networks and Machine Learning – ICANN 2020; 29th International C Igor Farka?,Paolo Masulli,Stefan Wermter Conference proc

[復(fù)制鏈接]
樓主: 預(yù)兆前
11#
發(fā)表于 2025-3-23 11:27:10 | 只看該作者
12#
發(fā)表于 2025-3-23 17:42:56 | 只看該作者
Neural Network Compression via?Learnable Wavelet Transformsers of RNNs. Our wavelet compressed RNNs have significantly fewer parameters yet still perform competitively with the state-of-the-art on synthetic and real-world RNN benchmarks (Source code is available at .). Wavelet optimization adds basis flexibility, without large numbers of extra weights.
13#
發(fā)表于 2025-3-23 20:50:10 | 只看該作者
0302-9743 sis, cognitive models, neural network theory and information theoretic learning, and robotics and neural models of perception and action...*The conference was postponed to 2021 due to the COVID-19 pandemic..978-3-030-61615-1978-3-030-61616-8Series ISSN 0302-9743 Series E-ISSN 1611-3349
14#
發(fā)表于 2025-3-23 23:03:36 | 只看該作者
15#
發(fā)表于 2025-3-24 05:34:17 | 只看該作者
16#
發(fā)表于 2025-3-24 09:02:25 | 只看該作者
17#
發(fā)表于 2025-3-24 10:51:28 | 只看該作者
,Zusammenfassung und Schluβfolgerungen, any algorithm achieving depth compression of neural networks. In particular, we show that depth compression is as hard as learning the input distribution, ruling out guarantees for most existing approaches. Furthermore, even when the input distribution is of a known, simple form, we show that there are no . algorithms for depth compression.
18#
發(fā)表于 2025-3-24 15:42:24 | 只看該作者
Glossar, Begriffe und Definitionen,ect of the former uncertainty-based methods. Experiments are made on CIFAR-10 and CIFAR-100, and the results indicates that prediction stability was effective and works well on fewer-labeled datasets. Prediction stability reaches the accuracy of traditional acquisition functions like entropy on CIFAR-10, and notably outperformed them on CIFAR-100.
19#
發(fā)表于 2025-3-24 21:42:56 | 只看該作者
20#
發(fā)表于 2025-3-25 00:05:02 | 只看該作者
Pruning Artificial Neural Networks: A Way to Find Well-Generalizing, High-Entropy Sharp Minimaroaches. In this work we also propose PSP-entropy, a measure to understand how a given neuron correlates to some specific learned classes. Interestingly, we observe that the features extracted by iteratively-pruned models are less correlated to specific classes, potentially making these models a better fit in transfer learning approaches.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 11:57
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
孟州市| 吴堡县| 万安县| 民丰县| 始兴县| 宜良县| 利辛县| 临高县| 苏尼特左旗| 黔南| 巴林左旗| 绍兴市| 航空| 曲阳县| 邵武市| 兰考县| 武定县| 北川| 西乌| 来安县| 门头沟区| 左权县| 镇沅| 乌兰察布市| 上思县| 社会| 讷河市| 凤冈县| 青龙| 丹阳市| 普定县| 南丰县| 永寿县| 南川市| 苗栗县| 霍邱县| 壤塘县| 鄂托克旗| 开远市| 遵化市| 休宁县|