找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Neural Networks and Machine Learning – ICANN 2019: Workshop and Special Sessions; 28th International C Igor V. Tetko,Věra K?rkov

[復(fù)制鏈接]
樓主: Spouse
11#
發(fā)表于 2025-3-23 12:47:21 | 只看該作者
12#
發(fā)表于 2025-3-23 16:05:34 | 只看該作者
13#
發(fā)表于 2025-3-23 22:05:37 | 只看該作者
14#
發(fā)表于 2025-3-23 22:55:59 | 只看該作者
15#
發(fā)表于 2025-3-24 04:53:45 | 只看該作者
Classification of Human Actions in Videos with a Large-Scale Photonic Reservoir Computerrol, and analysis. Deep learning achieved remarkable results, but remains hard to train in practice. Here, we propose a photonic reservoir computer for recognition of video-based human actions. Our experiment comprises off-the-shelf components and implements an easy-to-train neural network, scalable
16#
發(fā)表于 2025-3-24 07:30:07 | 只看該作者
17#
發(fā)表于 2025-3-24 13:52:43 | 只看該作者
https://doi.org/10.1007/978-3-030-30493-5artificial intelligence; classification; clustering; computer networks; echo state networks; image proces
18#
發(fā)表于 2025-3-24 18:03:32 | 只看該作者
978-3-030-30492-8Springer Nature Switzerland AG 2019
19#
發(fā)表于 2025-3-24 19:21:47 | 只看該作者
https://doi.org/10.1007/978-3-319-68883-1 be extracted from the inertial measurement unit of a mobile phone and introduce a segmentation scheme to distinguish between different gesture classes. The continuous sequences are fed into an Echo State Network, which learns sequential data fast and with good performance. We evaluated our system o
20#
發(fā)表于 2025-3-24 23:59:24 | 只看該作者
Hua-Xin Peng,Faxiang Qin,Manh-Huong Phane constant temporal patterns. For the short-term component, we used the Gated-Reservoir model: a reservoir trained to hold a triggered information from an input stream and maintain it in a readout unit. We combined both components in order to obtain a model in which information can go from long-term
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 23:01
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
和顺县| 开鲁县| 铁力市| 昌吉市| 襄汾县| 松溪县| 金坛市| 余干县| 林西县| 新乡市| 通山县| 宿州市| 姜堰市| 大城县| 洛阳市| 定兴县| 梁平县| 连州市| 宜兴市| 柳州市| 蒲江县| 赣榆县| 屏山县| 德清县| 黄陵县| 扬中市| 上高县| 白朗县| 启东市| 沂源县| 常德市| 康保县| 丰台区| 淮北市| 广饶县| 定西市| 明溪县| 如皋市| 甘孜| 新巴尔虎左旗| 新龙县|