找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Neural Networks and Machine Learning – ICANN 2018; 27th International C Věra K?rková,Yannis Manolopoulos,Ilias Maglogianni Confe

[復制鏈接]
樓主: VER
41#
發(fā)表于 2025-3-28 18:18:20 | 只看該作者
Training Neural Networks Using Predictor-Corrector Gradient Descentcent (PCGD). PCGD uses predictor-corrector inspired techniques to enhance gradient descent. This method uses a sparse history of network parameter values to make periodic predictions of future parameter values in an effort to skip unnecessary training iterations. This method can cut the number of tr
42#
發(fā)表于 2025-3-28 21:06:55 | 只看該作者
Investigating the Role of Astrocyte Units in a Feedforward Neural Networkooperating units in this function. Recent evidence sheds new light on astrocytes and presents them as important regulators of neuronal activity and synaptic plasticity. In this paper, we present a multi-layer perceptron (MLP) with artificial astrocyte units which listen to and regulate hidden neuron
43#
發(fā)表于 2025-3-29 00:47:35 | 只看該作者
44#
發(fā)表于 2025-3-29 06:02:22 | 只看該作者
Implementing Neural Turing Machines from memory by introducing an external memory unit. NTMs have demonstrated superior performance over Long Short-Term Memory Cells in several sequence learning tasks. A number of open source implementations of NTMs exist but are unstable during training and/or fail to replicate the reported performa
45#
發(fā)表于 2025-3-29 08:12:11 | 只看該作者
46#
發(fā)表于 2025-3-29 12:18:43 | 只看該作者
Practical Fractional-Order Neuron Dynamics for Reservoir Computingmal leaky integrator. In general, fractional-order derivative needs all memories leading to the current state from the initial state. Although this feature is useful as a viewpoint of memory capacity, to keep all memories is intractable, in particular, for reservoir computing with many neurons. A re
47#
發(fā)表于 2025-3-29 18:39:56 | 只看該作者
48#
發(fā)表于 2025-3-29 23:12:46 | 只看該作者
Towards End-to-End Raw Audio Music Synthesis timing, pitch accuracy and pattern generalization for automated music generation when processing raw audio data. To this end, we present a proof of concept and build a recurrent neural network architecture capable of generalizing appropriate musical raw audio tracks.
49#
發(fā)表于 2025-3-30 01:24:49 | 只看該作者
50#
發(fā)表于 2025-3-30 06:17:31 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-24 17:42
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
平凉市| 岑巩县| 贞丰县| 凌海市| 谷城县| 云龙县| 高邑县| 西宁市| 长子县| 缙云县| 宕昌县| 山阳县| 陇西县| 从江县| 亳州市| 黔西| 息烽县| 桃江县| 临澧县| 鄂托克前旗| 河间市| 岳普湖县| 兴安县| 南康市| 余江县| 宾川县| 宣城市| 甘洛县| 新郑市| 平遥县| 祁阳县| 阿拉善右旗| 内丘县| 开化县| 博白县| 太原市| 华安县| 应城市| 宣恩县| 两当县| 景宁|