找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Neural Networks and Machine Learning – ICANN 2017; 26th International C Alessandra Lintas,Stefano Rovetta,Alessandro E.P. Confe

[復制鏈接]
樓主: 出租車
51#
發(fā)表于 2025-3-30 09:26:37 | 只看該作者
Fernsehen – Internet – Konvergenzcessfully employed for nation-state APT attribution. We use sandbox reports (recording the behavior of the APT when run dynamically) as raw input for the neural network, allowing the DNN to learn high level feature abstractions of the APTs itself. Using a test set of 1,000 Chinese and Russian developed APTs, we achieved an accuracy rate of 94.6%.
52#
發(fā)表于 2025-3-30 13:23:13 | 只看該作者
https://doi.org/10.1007/978-3-658-30251-1butions of groups and parameters that represent the noise as hidden variables. The model can be learned based on a variational Bayesian method. In numerical experiments, we show that the proposed model outperforms existing methods in terms of the estimation of the true labels of instances.
53#
發(fā)表于 2025-3-30 18:12:19 | 只看該作者
54#
發(fā)表于 2025-3-30 21:56:41 | 只看該作者
55#
發(fā)表于 2025-3-31 02:51:02 | 只看該作者
56#
發(fā)表于 2025-3-31 08:27:42 | 只看該作者
DeepAPT: Nation-State APT Attribution Using End-to-End Deep Neural Networkscessfully employed for nation-state APT attribution. We use sandbox reports (recording the behavior of the APT when run dynamically) as raw input for the neural network, allowing the DNN to learn high level feature abstractions of the APTs itself. Using a test set of 1,000 Chinese and Russian developed APTs, we achieved an accuracy rate of 94.6%.
57#
發(fā)表于 2025-3-31 10:03:14 | 只看該作者
58#
發(fā)表于 2025-3-31 13:23:04 | 只看該作者
59#
發(fā)表于 2025-3-31 19:32:41 | 只看該作者
60#
發(fā)表于 2025-4-1 01:13:39 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 09:41
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
长治县| 揭东县| 广东省| 泰州市| 新乡县| 阿拉善右旗| 封开县| 宝丰县| 鸡西市| 晴隆县| 嘉黎县| 上饶市| 伊吾县| 华坪县| 丰县| 姜堰市| 含山县| 宜章县| 南和县| 咸宁市| 呼图壁县| 盱眙县| 诸城市| 澄江县| 库伦旗| 麻城市| 永寿县| 铜山县| 琼海市| 华池县| 惠东县| 辽中县| 海阳市| 郴州市| 梅河口市| 克拉玛依市| 印江| 修文县| 永登县| 丹阳市| 林州市|